
Cryptanalysis on GPUs with the Cube Attack:
Design, Optimization and Performances Gains

Marco Cianfriglia∗
“Roma Tre” University

Rome, Italy
cianfriglia@mat.uniroma3.it

Stefano Guarino
Institute for Applied Computing (IAC - CNR)

Rome, Italy
s.guarino@iac.cnr.it

Abstract—The cube attack is a flexible cryptanalysis technique,
with a simple and fascinating theoretical implant. It combines
offline exhaustive searches over selected tweakable public/IV bits
(the sides of the “cube”), with an online key-recovery phase.
Although virtually applicable to any cipher, and generally praised
by the research community, the real potential of the attack is
still in question, and no implementation so far succeeded in
breaking a real-world strong cipher. In this paper, we present,
validate and analyze the first thorough implementation of the
cube attack on a GPU cluster. The framework is conceived so as
to be usable out-of-the-box for any cipher featuring up to 128-
bit key and IV, and easily adaptable to larger key/IV, at just the
cost of some fine (performance) tuning, mostly related to memory
allocation. As a test case, we consider previous state-of-the-art
results against a reduced-round version of a well-known cipher
(Trivium). We evaluate the computational speedup with respect
to a CPU-parallel benchmark, the performance dependence on
system parameters and GPU architectures (Nvidia Kepler vs
Nvidia Pascal), and the scalability of our solution on multi-GPU
systems. All design choices are carefully described, and their
respective advantages and drawbacks are discussed. By exhibiting
the benefits of a complete GPU-tailored implementation of the
cube attack, we provide novel and strong elements in support
of the general feasibility of the attack, thus paving the way for
future work in the area.

Keywords—Cube attack; GPU; framework; performance

I. INTRODUCTION

Dinur and Shamir’s cube attack [1] is a chosen-plaintext
attack in which linear equations binding key bits are extracted
through exhaustive searches over selected public/IV bits – the
edges of the cubes the attack is named after. The success of
the attack depends on its ability to detect imbalances into the
distribution of monomials in the polynomial representation of
the target cipher. Since these statistical flaws are generally
unknown beforehand, the attack is often run without a clear
prior insight into a convenient strategy for selecting the cubes
– an approach made possible by the fact that the attack only
requires black-box access to the attacked cipher. Possible prac-
tical strategies include exploring cubes of different (possibly
large) size, trying many different sets of indices, and varying
the binary assignment of the public bits not belonging to the
tested cube, all solutions that come at an exponential cost.
As in Time-Memory-Data Trade-Off (TMDTO) attacks, the

∗Also Research Associate at IAC CNR

extensiveness of the pre-computation stage, which ultimately
determines the attack’s success rate, must be carefully tuned
on the available computing power, memory, and data.

While previous CPU-based approaches seem to pursuit a
balanced use of time and memory, in this paper we present
an implementations of the cube attack that fully leverages the
potential of Graphics Processing Units (GPUs) to boost the
parallel search for suitable cubes. As a test case, we replicate
and extend previous results [2] against reduced-round versions
of the well-known cipher Trivium [3]. Without neglecting the
relevance of our findings, that we briefly report and comment,
this paper is tailored towards a careful evaluation of the
performance of our implementation; a detailed analysis of our
results is reported in a more crypto-oriented article [4]. The
contributions hereby provided can be summarized as follows:

• We show how to tune the design and implementation of
the cube attack to the characteristics of GPUs, in order
to fully exploit parallelization while coping with limited
memory.

• We present a flexible framework to mount cube attacks
against any cipher, under the sole condition that the cipher
is as well implemented in GPU. The tool is independent
of the GPU architecture, and it supports extension to
multi-GPU systems.

• We carefully analyse the performance of our implemen-
tation, in terms of: (i) speedup with respect to a CPU
implementation, (ii) dependence on system parameters,
(iii) comparison among different architectures (including
latest generation GPU cards), and (iv) impact of a multi-
GPU distributed approach.

• We underline the advantages and drawbacks of a GPU-
based cube attack from a cryptographic perspective.
We especially focus on the possibility offered by our
implementation – with negligible additional costs – to
generalize the attack to a dimension never explored in
previous works, with several benefits that we identify and
briefly discuss.

This article is organized as follows: we start by positioning
our paper in the literature, reviewing basic notions and previ-
ous work related to the cube attack and to distributed/parallel
cryptanalysis (Section II); we then describe the design of our

2017 International Conference on High Performance Computing & Simulation

978-1-5386-3250-5/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCS.2017.114

753

GPU-based cube attack (Section III), and report the results of
a preliminary test-bed attack (Section IV); finally, we present a
detailed performance analysis (Section V), followed by a recap
of attained goals and directions for future work (Section VI).

II. BACKGROUND

Let us start with a few basic notions and a brief overview
of related work, needed to contextualize, motivate, and fully
understand our contributions.

A. The Cube Attack

The cube attack is a widely applicable method of crypt-
analysis introduced by Dinur and Shamir [1], based on a
construction similar to Vielhaber’s AIDA [5]. The underlying
idea, object of extensions (dynamic cube attacks [6], [7], cube
testers [8], [9]) and generalizations [10], [11] in the literature,
is to extract from the unknown polynomial representation of
the target cipher a set of linear (or low-degree) equations
binding key variables, replacing a symbolic factorization with
an exhaustive evaluation over selected public variables.

Let E(x,y) denote the target cipher, as a function of
two vectors: the n public variables x (the IV) and the k
private variables y (the key K). A generic keystream bit z
can be expressed as z = p(x,y), where p is the polynomial
representation of E, and all variables appear in p with degree
1, at most. The idea of the attack is to choose a subset of
m public variables xI ⊂ x indexed by I ⊂ {1, . . . , n} and
focus on the quotient pS(I)(xI ,y) of the division of p(x,y)
by the monomial tI =

∏
x∈xI

x. By definition, pS(I)(xI ,y),
called the superpoly of I in p, only depends on public
variables xI indexed by I’s complement I (other than y).
If we find pS(I)(xI ,y) and assign any value vI to xI , we
obtain a polynomial pS(I)(vI ,y) = pS(I)(y) only binding key
variables1. If I is such that pS(I)(y) is linear, the monomial
tI is called a maxterm for p with the assignment vI . If we can
identify maxterms and find the symbolic expression of their
superpolys, we obtain a system of linear equations that can be
used to recover the secret key.

Unfortunately, we cannot find pS(I)(xI ,y) symbolically
because we do not know p(x,y) in the first place. To make
up for it, we observe that all monomials in pS(I)(xI ,y) do
not contain any of the variables xI , whereas all monomials in
the remainder q(x,y) of the division of p(x,y) by tI do not
contain at least one of the variables in xI . For this reason, if
CI(vI) denotes the cube composed by all 2m possible binary
assignments to x conditioned to xI = vI , the sum of p(x,y)
over CI(vI) yields [1]∑

v∈CI(vI)

p(v,y) = pS(I)(vI ,y) = pS(I)(y) (1)

regardless of the values assigned to y. In other words, we can
find pS(I)(y) through an exhaustive sum over xI .

1The standard assumption is vI = 0, but this is not actually required.

The following example will help clarifying the notation.

Example 1. Let n = 3, k = 1, and

p(x1, x2, x3, y1) = x1x2y1 + x1x3 + x1x2 + x2y1 + x3y1 +1

If I = {1, 2} (i.e., xI = {x1, x2}, xI = {x3}), we have

p(x1, x2, x3, y1) = x1x2︸︷︷︸
tI

(y1 + 1︸ ︷︷ ︸
pS(I)

)+(x1x3 + x2y1 + x3y1 + 1︸ ︷︷ ︸
q(x1,x2,x3,v1)

)

If x3 = 1 (i.e., vI = {1}), summing p over the cube CI(vI) =
{001, 011, 101, 111}, we have:∑

v∈CI(vI)

p(v,y) = y1 + 1︸ ︷︷ ︸
p(001,y1)

+ y1 + y1 + 1︸ ︷︷ ︸
p(011,y1)

+1 + y1 + 1︸ ︷︷ ︸
p(101,y1)

+

+ y1 + 1 + 1 + y1 + y1 + 1︸ ︷︷ ︸
p(111,y1)

= y1 + 1

that is exactly pS(I)(y1).

Despite the cube attack and its variants have shown promis-
ing results against several ciphers (e.g., Trivium [1], Grain [6],
Hummingbird-2 [12], Katan and Simon [7], Quavium [13]),
the attack also attracted harsh criticism [14]. Indeed, all im-
plementations of the cube attack so far targeted reduced-round
variants of a cipher. With no evidence that the full version can
be equally attacked, the feasibility and convenience of cube
attacks is still disputed. However, in contrast with a diffused
belief that the cube attack only works if the polynomial p
has low degree, Fouque and Vannet [2] argued (and, to some
extent, experimentally showed) that effective cube attacks can
be run not aiming at p’s maximum degree, but rather exploiting
a nonrandom p by searching for maxterms of significantly
lower degree.

B. Distributed/Parallel Cryptanalysis

In cryptanalysis, distributed computing and/or parallel pro-
cessing can be used to render attacks computationally or
storage-wise feasible/practical. Outsourcing onerous compu-
tations to third parties is an increasing trend, with no specific
restrainers to applications in this context: Smart et al. [15],
for instance, developed a new methodology to assess cryp-
tographic key strength on the cloud. The interest of the
research community, however, is mostly towards assessing the
impact of latest generation hardware on the performance of
cryptanalytic tools. Along this line, Marks et al. [16] provided
numerical evidence of the potential of mixed GPU (AMD,
Nvidia) & CPU technology to data encryption and decryption
algorithms. Focusing on GPU, Milo et al [17] leveraged GPUs
to quickly test passphrases used to protect private keyrings of
OpenPGP cryptosystems, showing that the time complexity
of the attack can be reduced up to three-orders of magnitude
with respect to a standard procedure, and up to ten times with
respect to a highly tuned CPU implementation. Dictionary
Attacks can also significantly benefit from GPUs, as shown by
Agostini [18] attacking the BitLocker technology commonly
used in Windows OSes to encrypt disks.

754

For what concerns the cube attack, some early papers
boosted cube attacks using programmable parallel hardware.
Aumasson et al. [19] used an FPGA implementation of
cube testers on Grain-128, that allowed them running 256
instances of Grain-128 in parallel, each instance being itself
parallelized by a factor 32. Dinur et al. [20] instead relied on
RIVYERA, a massively parallel reconfigurable hardware, in
order to experimentally verify the correctness and expected
complexity of their dynamic cube attack against Grain-128.
Finally, Fan and Gong [12] made use of GPUs to perform
a side channel cube attack on Hummingbird-2, based on an
efficient term-by-term quadraticity test. However, differently
from our complete framework for running cube attacks on
GPUs, Fan and Gong [12] only used GPUs to parallelize (in a
somewhat naive way, as motivated at the end of Section III-C)
the evaluation of the cipher over all subcubes of a maximal
cube of size 16. Although they showed that GPUs are a
viable option to boost the performance of specific tasks, we
do provide the first all-round GPU implementation of the cube
attack, thoroughly designed for maximal performance, and
reusable out-of-the-box for other ciphers.

III. THE PROPOSED GPU IMPLEMENTATION OF THE
ATTACK

In this section, we present, detail, and discuss our attack,
designed to run on a cluster equipped with Graphics Process-
ing Units (GPUs). As previously mentioned, the success of
a cube attack is highly dependent on suitable implementation
choices. In order to better explain our own approach, we start
with an analysis of the cube attack from a more implementative
perspective.

A. Practical Cube Attack

At a high level, any practical implementation of the cube
attack requires performing the following steps:

Choosing a candidate maxterm tI : Since the complexity
of evaluating cube CI scales exponentially with |I|, finding a
convenient strategy to select the index set I (or, equivalently,
the candidate maxterm tI), is of primary importance. A
common assumption is the existence of a threshold degree,
cutting apart monomials that yield a nonlinear superpoly from
monomials that yield a constant one. Even assuming that the
degree of most maxterms lies around some threshold, the
lack of information about the distribution of monomials in
p prevents any prior educated guess at both the value of the
threshold and the actual selection of variables in tI . In the
literature, a few approaches have been proposed to try to
address both issues at once. Dinur and Shamir [1] proposed a
random walk over index sets, starting from a random set I and
iteratively updating I adding or subtracting random elements
according to the experimentally tested degree of the superpoly
pS(I). Alternatively, Fouque and Vannet [2] used the Moebius
transform to concurrently compute the sums over all subcubes
of a maximal cube CImax characterized by having the variables

xI set to 0. Additionally, they suggested a heuristic to identify
cubes expected to behave better than others, and used it to
select the most promising maximal set Imax. However, none
of these two strategies is suitable for GPUs, as we will better
describe in Section III-C.

Testing pS(I) for linearity: In principle, assessing if
tI is a maxterm requires finding the symbolic expression of
pS(I)(vI ,y), for all possible assignments vI to variables xI .
However, efficient probabilistic linearity tests [21], [22] can be
safely used in practice. Additionally, aiming at minimize the
degree of pS(I)(vI ,y), only pS(I)(0,y) is usually considered
in the literature. We argue that this is not necessarily the best
choice, as motivated by our results presented in Section IV. In
any case, at this stage we can omit the dependence on vI and
assume that pS(I)(y) only depends on y. Probabilistic tests
involve verifying if

pS(I)(u1 + u2) = pS(I)(u1) + pS(I)(u2) + pS(I)(0) (2)

holds for random pairs of vectors u1,u2. In fact, (2) must be
true for all u1,u2 if pS(I) is linear, whereas, in general, it
holds with probability 1

2 . Practically, (2) means∑
v∈CI

E(v,u1+u2) =
∑
v∈CI

E(v,u1)+
∑
v∈CI

E(v,u2)+
∑
v∈CI

E(v,0)

thus requiring four numerical sums.

Finding linear equations: Each maxterm tI yields a
linear equation

pS(I)(y) =
∑
v∈CI

E(v,K) (3)

whose left side is a linear combination of the key variables
y with coefficients found offline, whereas the right side is
a number found online, and whose solution is the sought
unknown assignment of the key K to y. Finding the right
side of (3) involves a single sum, assuming the availability of
the 2m keystream bits produced with K assigned to y, as x
takes all possible assignments v ∈ CI . Finding the symbolic
expression on the left side of (3) instead requires k+1 sums:
the free term of pS(I)(y) is

pS(I)(0) =
∑
v∈CI

E(v,0)

whereas the coefficient of each variable yi is

pS(I)(ei) + pS(I)(0) =
∑
v∈CI

E(v, ei) +
∑
v∈CI

E(v,0)

where ei is the unit vector with all null coordinates except
yi = 1.

Solving the linear system: Finally, once a set of linear
superpolys have been found, we need to solve the obtained lin-
ear system. This can be achieved with any suitable technique
described in the literature.

B. The Setting

Generally speaking, GPUs are processing units character-
ized by the following advantages and limitations:

755

Computing: Each unit features a large number (i.e,
thousands) of simple cores, that make possible running a much
higher number of parallel threads compared to a standard CPU.
More precisely, the GPU’s basic processing unit is the warp
consisting of 32 threads each. Threads are designed to work
on 32-bit words, and the performance is maximized if all
threads belonging to the same warp execute exactly the same
operations at the same time on different but contiguous data.

Memory: The so-called global memory available on a
GPU is limited, typically between 4 and 12 GB. Each thread
can independently access data (random access is fully sup-
ported, but costly performance-wise). However, when threads
in a warp access consecutive 32-bit words, the cost is equiv-
alent to a single memory operation. Concurrent readings and
writings by different threads to the same resources, which
require some level of synchronization, should be avoided to
prevent serialization that defeats parallelism.

The basic step of the attack is the sum of E(v,y) over all
elements v of a cube CI . Each time we sum over a cube, the
key variables y are fixed, either to a random uj for the linearity
tests, or to 0 and to versors ei for determining the superpoly.
In both cases exactly the same sum

∑
v∈CI

E(v,uj) must be
performed for all elements of a set of keys {u1, . . . ,uM}.

We define the following strategy for carrying out the sums
over a cube with the goal of maximizing the parallelization and
fully exploiting at its best the computational power offered by
GPUs:

• Assigning to all the threads within a warp the computa-
tion of the same cube CI but with a different key uj .
This choice guarantees that all threads perform the same
operation at the same time for the entire computation.

• Leveraging the GPU computational power to calculate all
the elements of a cube CI , providing to the threads just
a bit-mask representing the set I . With this approach we
can exploit all available GPU memory to store the cubes
evaluations and minimize, at the same time, the number
of memory access operations.

• Defining a keystream generator function E(x,y) which
outputs a 32-bit word, and letting each thread work on
the whole word, fully leveraging the GPU computing
model. This approach offers two remarkable benefits: (i)
considering 32 keystream bits altogether is equivalent to
concurrently attacking 32 different polynomials, and (ii)
working on 32-bit integers fits much better with the GPUs
features, whereas forcing the threads to work on single
bits would critically affect the performance of the attack.
As a drawback, attacking 32 keystream bits altogether
increases (of a factor 32) the memory needed for storing
the cubes’ evaluation, thus imposing some limitations on
the size of the cubes to be tested, as we will clarify later.

• Choosing the number M of keys to be a multiple of the
warp size in order to perform the probabilistic linearity
test on 32 keystream bits at the same time and for all M
keys.

C. The Attack

The practical review of the cube attack presented in Sec-
tion III-A brought to light that the attack requires, for each
cube, exponentially many calls to the target cipher E, followed
by as many sums of the resulting outputs. In Section III-B we
identified a few tips to tailor the computation of a cube so as to
unleash the potential of GPUs. However, the proposed strategy
prescribes considering altogether all M different keys per cube
needed to run the linearity test. This means that, if T denoted
the available memory and |T | its size, the amount of usable
memory is de facto reduced to |T |/M , thus making even more
strict the already severe memory constraints characterizing
GPUs.

In CPU-based cube attacks, main memory is mostly used
to store single evaluations of the cipher over the vertices of
some maximal cube CImax

. In [1], these evaluations are used
to perform a random walk that, starting from a random subset
I ⊂ Imax, iteratively tests the superpoly pS(I) to decide
whether the degree of tI should be increased or decreased.
In [2], the table storing these 2|Imax| values is Moebius-
transformed to compute at once the sums over

(|Imax|
d

)
sub-

cubes of CImax
of degree d, for d = 0, . . . , |Imax|. These

cubes are all possible subcubes CI of CImax in which the
variables xI have been set to 0. None of these two strategies
is suitable for GPUs: the stochastic nature of the random walk
prevents the sequence of steps from being determined a priori,
since the computation is performed only when (and if) needed;
the Moebius transform requires a rigid schema of calculations
and a large number of alternating read and write operations
in memory that must be synchronized. Both approaches are
conceived for implementations in which computational power
is a constraint (while memory is not), and all advantages
of using the Moebius Transform are lost in case of parallel
processing. Additionally, storing single evaluations of the
cipher in T means testing only subcubes of a maximal cube of
size |Imax| = log2(|T |/M), but, with the memory available
in current GPUs, log2(|T |/M) is not large enough for any
reasonably strong cipher.

The proposed design of the attack relies on the following
rationale: exploring only a portion of the maximal cube CImax

,
considering only subsets I ⊆ Imax characterized by a non-
empty minimal intersection Imin. Quite naturally, a similar
design leads to two distinct CUDA2 kernels, respectively
responsible for: (1) computing many variants of the cube
CImin

, one for each of the possible combinations of the
indices in Imax \ Imin, and writing the results in memory;
(2) combining the stored results to test all cubes CI such that
Imin ⊆ I ⊆ Imax. Following this approach, the size of the
explored Imax can be raised to |Imax| = |Imin|+log2(|T |/M),
with read and write memory operations carried out by different
kernels.

With respect to the notation introduced in Section II-A, let

2CUDA is the software framework used for programming Nvidia GPUs.

756

us distinguish the public variables x into three sets xfix, xfree,
and x∗, of size dfix, dfree, and n− d, respectively, where d =
dfix−dfree. The variables xfix correspond to the fixed compo-
nents of CImax identified by Imin, i.e., Imin = {i1, . . . , idfix},
whereas the variables xfree correspond to the remaining free
components of CImax

, i.e., Imax \ Imin = {j1, . . . , jdfree}
and |Imax| = d. The variables x∗ are the remaining public
variables that fall outside Imax.

The two kernels of our attack can be described as follows:

Kernel 1: It uses 2dfree warps. Since, as described before,
the 32 threads belonging to the same warp perform exactly the
same operations but for different keys, in the following we
simply consider a representative thread per warp and ignore
the private variables y.3 For t = 0, . . . , 2dfree − 1, thread (i.e.,
warp) s sums E(v,y) over each vertex of the cube CsImin

of size dfix determined by the assignment of the dfree-bit
representation vfree of integer s to the variables xfree and of
0 to the variable x∗. Finally, thread s writes the sum in the
sth entry of table T , so that, at the end of the execution of the
kernel, each entry of T contains the sum over a cube of size
dfix. These evaluations allow for testing the monomial tImin

with all the aforementioned assignments to the other n− dfix

variables.

Kernel 2: By simply combining the values stored in T
at the end of Kernel 1, it is now possible to explore cubes of
potentially any size dfix + δ, with 0 ≤ δ ≤ dfree. Although
the exploration can potentially follow many other approaches
(e.g., a random walk as in [1]), the large computing power
of our platform suggests to test cubes exhaustively. Moreover,
we extend the exhaustive search to an area never reached, to
the best of our knowledge, in the literature. For all I such that
Imin ⊆ I ⊆ Imax, this kernel considers all variants of cube
CI obtained assigning all possible combinations of values to
the variables in Imax \ I . More precisely, for each possible
choice of δ ∈ [0, dfree], there are exactly

(
dfree
δ

)
2dfree−δ distinct

cubes of size dfix + δ available. In fact, we can choose δ free
variables (the additional dimensions of the cube) in

(
dfree
δ

)
different ways, and we can choose the fixed assignment to the
remaining dfree − δ variables in any of the 2dfree−δ possible
combinations.

We would like to highlight that Kernel 2 is computationally
dominated by Kernel 1, so the cost of our exhaustive search
is negligible. This way, our design allows considering any
possible assignment to variables outside the cube, to finally
address the common conjecture (never proved in the literature),
that assigning 0 is the best possible solution. As a matter
of fact, this means a significant gain in terms of number of
cubes tested with respect to previous works: with 2dfree bits
of memory, the approach used in [2] allows considering 2dfree

cubes, whereas we are able to test 3dfree different cubes.

Finally, let us underline the significant divergence between

3The work that here is assigned to a single thread can be actually split
among any number of threads, reassembling the results at the end. We will
not consider this possibility here for the sake of clarity.

our work and [12], the first paper to ever use GPUs for a
cube attack. In [12], Fan and Gong use GPUs to accelerate the
summation of the polynomial p over all subcubes of a maximal
cube of size 16. However, they use a rather trivial approach: for
a cube of size k, they launch 2k threads in charge of evaluating
the cipher E over each of the 2k vertices of the cube, followed
by a parallel reduction process where these 2k values are
summed using so-called shared memory. Basically, they just
use GPUs to call E in parallel over multiple inputs, but sums
over different cubes are processed sequentially, and the impact
of the warp structure is completely overlooked. Additionally,
they only consider a very small maximal cube, not discussing
whether their scheme scales to larger dimensions. Conversely,
the design and implementation of our GPU kernels thoroughly
covers all steps of the attack, maximizing the performance
subject to all architectural constraints, such as warp size and
limited memory. Besides the high-level engineering described
before, we implement a few low-level optimizations: all com-
putations internal to our kernels only rely on registers, that are
the fastest type of memory available on GPUs, avoiding any
use of shared memory, and we leverage some built-in CUDA
functions, such as warp shuffle, to efficiently exchange values
between threads belonging to the same warp, when needed
(e.g., when we perform the linearity tests).

IV. TEST CASE: RESULTS AGAINST TRIVIUM

To test the viability of our implementation, we mounted an
attack against a reduced-round variant of Trivium, a stream
cipher conceived by De Cannière and Preneel [3], part of
the eSTREAM portfolio. Trivium generates up to 264 bits of
output from an 80-bit key K and an 80-bit Initial Vector IV ,
and it shows remarkable resistance to cryptanalysis despite its
simplicity and its excellent performance. Trivium is composed
by a 288-bit internal state consisting of three shift registers of
length 93, 84 and 111, respectively. The feedback to each of
these registers and the output bit of the cipher are obtained
through non-linear combinations involving in total 15 out of
the 288 internal state bits. To initialize the cipher, K and IV
are written into two of the shift registers, with a fixed pattern
filling the remaining bits. 1152 initialization rounds guarantee
that the output begins to be produced only after all key-bits
and IV -bits have been sufficiently mixed together to define
the internal state of the registers.

In recent years, several implementations of the cube attack
attempted at breaking Trivium. Quedenfeld et al. [23] found
cubes for Trivium up to round 446. Srinivasan [24] obtained 69
extremely sparse linearly independent superpolys for Trivium
reduced to 576 rounds. In their seminal paper [1], Dinur and
Shamir found 63, 53, and 35 linearly independent superpolys
after, respectively, 672, 735, and 767 rounds. Fouque and
Vannet [2] even improved over Dinur and Shamir, by obtaining
42 linearly independent superpolys after 784 rounds, and 12
linearly independent superpolys (plus 6 quadratic superpolys)
after 799 rounds. To the best of our knowledge, these are
the best results against Trivium to date. However, O’Neil [25]

757

suggests that even the full version of Trivium exhibits limited
randomness, thus making of Trivium a perfect candidate for
further attempts to evaluate the effectiveness of the cube attack.

First of all, in order to validate our implementation of
the cube attack, we symbolically evaluated the polynomial
p of Trivium up to 400 initialization rounds, and used p to
identify all possible maxterms and their superpoly. We then
ran the attack to find all maxterms whose variables belonged
to selected sets I . Our experimental findings matched the
symbolical findings. Next, we considered Trivium reduced to
768 initialization rounds, and we ran additional experiments
specifically designed to reproduce (and possibly extend) re-
sults from [2]. The rationale was to provide, at once: (i) a
further validation of the correctness of our code; (ii) a direct
comparison of our results with the state-of-the-art; and (iii) an
immediate means to assess the advantages of our approach.

The attack ran on a cluster composed by 3 nodes, each
equipped with 2 Tesla K80 with 24 GB of global memory and
4 Intel Xeon CPU E5-2640 with 128 GB of RAM. We recall
that each K80 is in turn composed by two K40 with 12GB
of global memory each. We launched 12 runs based on 12
different pairs Imin, Imax, chosen so as to guarantee that each
of the 12 linearly independent superpolys found in [2] after
799 initialization rounds was to be found by one of our runs.
Differently from the tests presented in Section V, designed to
permit an analysis of the dependence of the performance of our
tool on system parameters, for the real attack the size of Imin

and Imax\Imin is dfix = 25 and dfree = 16, respectively, for all
runs, so that all maximal cubes have size d = dfix+dfree = 41.
In all the reported experiments, we used a complete-graph
linearity test [22] based on combining 10 randomly sampled
keys, following the common practice for cube attacks [1], [2].
As explained and motivated before, in our scheme, each call to
Trivium produces 32 key-stream bits, which we concurrently
attack in search of superpolys. The most significant practical
consequence of a similar construction is the ability to devise
attacks to Trivium reduced to any number of initialization
rounds ranging from 768 to 799, at the cost of a single attack:
in short, an attack to Trivium reduced to 768+ i initialization
rounds can count upon all superpolys found in correspondence
of the jth output bit after 768 rounds, for all j ≥ i.

Figure 1 shows the number of linearly independent super-
polys found by our attack, as a function of the number of
initialization rounds, comparing our findings with those of [2].
Overall, our results extend the state-of-the-art in a remarkable
way, especially if we consider that our quest for maxterms was
circumscribed to multiples of 12 base monomials of degree 25.
In particular, let us highlight a few aspects that emerge from
Figure 1:

• Our attack allows a full key recovery up to 781 initial-
ization rounds.

• For 784 rounds, we find 59 linearly independent super-
polys, compared with the 42 found in [2].

• Since our runs were designed to include all 12 maxterms

found in [2] after 799 initialization rounds, it is not
surprising that our results are no worse than theirs.
Yet, we found 3 more linearly independent superpolys,
reaching rank 15.

Finally, let us recall that when we test the monomial composed
of all variables in some set Imin ⊆ I ⊆ Imax, we exhaus-
tively assign values to all public variables in Imax \ I , thus
concurrently testing the linearity of 241−|I| possibly different
superpolys. To stress the primary benefits of this feature of our
attack, we compare our full results with analogous results in
which this additional feature has been disabled, showing that
in the latter case the effectiveness of the attack is significantly
reduced. It is important to underline that this possibility was
overlooked in the literature due to computational constraints,
but it comes almost free-of-charge in our framework.

765 770 775 780 785 790 795 800

20

40

60

80

Number of initialization rounds

N
u
m
b
er

o
f
li
n
ea
rl
y
in
d
ep

en
d
en
t
su
p
er
p
o
ly
s

Full results
Results no ex.

Results in [16]

Figure 1: The results of our attack for different reduced-round
variants of Trivium: full results vs. results without exhaustive
search (no ex.) vs. previous work

V. PERFORMANCE ANALYSIS

To evaluate the performance of our GPU based solution,
we carried out an extensive experimental campaign on the
previously described cluster. In addition, we had limited access
to an additional node equipped with a Tesla P100, a latest
generation GPU card based on the Pascal architecture. For
comparison, we also developed a parallel CPU version of the
cube attack based on OpenMP. This implementation exploits
the 32 cores of the four Intel(R) Xeon(R) CPU E5-2640 and
scales linearly as the size of the problem. Each performance
test was executed 5 times and the average time is reported.

In Figure 2, we report the speedup gained by the GPU
version with respect to the parallel CPU version. Anchoring
the size of Imin to dfix = 16, we evaluated the two solutions
over a growing maximal cube CImax

, whose size is exponential
in the cardinality dfree of the index set Imax \ Imin. The
experiments show that the benefit of using the GPU version
grows with the number of free variables dfree considered,
outreaching a 80× speedup when dfree = 16. It is worth

758

noticing that all versions rely on the same base functions to
implement Trivium.

1 6 11 16

1

10

100

Number of free variables dfree

T
im

e
S
p
ee
d
u
p
(d

fi
x
=
16

)

CPU parallel /GPU

Figure 2: Speedup of GPU w.r.t. parallel CPU

A second set of experiments was aimed at evaluating how
the GPU solution scales when dfree increases. To this end, we
measured the execution time of the attack on a Kepler K40, as
a function of dfree, for different values of dfix. These measure-
ments, reported in Figure 3, show that: (i) varying dfix only
yields an additive shift; (ii) when the size of the problem is
large enough to guarantee the full utilization of computational
resources (dfree ≥ 9), our solution scales roughly linearly with
the size of the problem, i.e., exponentially with the number of
dimensions of the explored cube. To explain why dfree = 9
behaves as a threshold, we need to delve into some of the
configuration aspects discussed in Section III.

According to our design, each warp is assigned the com-
putation over a single subcube, so that all the information a
thread needs are computed locally, and only the final results
are stored in memory. We thus know how many warps are
needed for a specific computation, and, based on our code
optimization, we can predict the exact number of GPU blocks
used for that computation. Specifically, the number of blocks
Nblocks is determined as:

Nblocks =

⌈
2dfree · Swarp

Smax
block

⌉
where Swarp is the warp size (i.e., number of threads per
warp), while Smax

block is the maximum block size (i.e., maximum
number of threads per block). In our case, Swarp = 32 and
Smax

block = 1024, thus yielding Nblocks = d2dfree−5e. This means
that dfree = 8 and dfree = 9 correspond to, respectively,
Nblocks = 8 and Nblocks = 16. These numbers should
be compared with the number of Streaming Multiprocessors
(SMs) of the GPU card used, that is 13 on the K40. dfree = 9
is the first value for which the number of allocated blocks is
larger than the number of SMs, producing at least one active
block per SM, and thus an use of the GPU at operating speed.
Let us underline that we observed an analogous behaviour
on the Pascal P100, but with the threshold shifted to 11:
when dfix = 25, the execution time stays roughly constant

(approximately 1010 sec) when 6 ≤ dfree ≤ 10, before
suddenly doubling when dfree = 11. This is perfectly coherent
with the characteristics of the P100, as it has 60 SMs, and
211−5 = 64.

1 6 9 11 16

100

101

102

103

104

105

Number of free variables dfree

E
x
ec
u
ti
on

T
im

e
(s
ec
)

dfix = 25
dfix = 20
dfix = 15

Figure 3: GPU performance analysis

Moreover, in order to assess the impact of the GPU archi-
tecture on the performance of our framework, we compared
the execution time of the attack on the Pascal P100 and on
the Kepler K40. Interestingly, running the experiments on the
P100 did not require any code adjustment, we just had to
recompile our code for that architecture. Although we could
not replicate on the P100 all the experiments run on the K40
due to limited availability, Figure 4 clearly shows that using
the Pascal architecture yields a significant speedup. We set
dfix = 25 and dfree ∈ {6, 11, 16}, measuring an increasing
speedup as the size of the problem grows. When dfree = 16, in
particular, the execution time on the P100 becomes more than
5× smaller than on the K40. These very promising preliminary
tests of the performance of the Pascal architecture support
the viability of our approach, and suggest that the search for
maxterms of a cube attack can significantly benefit from the
progress of GPU technologies.

6 11 16

1

2

3

4

5

Number of free variables dfree

T
im

e
S
p
ee
d
u
p
(d

fi
x
=
25

)

Kepler/Pascal

Figure 4: Speedup of Pascal P100 w.r.t. Kepler K40

Finally, we compared the execution time of the attack on
cubes of size dfix = 25 and dfree ∈ {6, 11, 16}, when the

759

workload is equally distributed among 1, 2, 4, and 8 K40s, in
order to evaluate the scalability of our framework on multi-
GPU systems. The distribution process splits a cube of size
|I| among 2l GPUs by assigning to each GPU a subcube
of size |I − l|; it then merges all 2l partial computations
altogether obtaining the original cube. As mentioned before
for the mono-GPU experiments, in order to use the GPUs at
operating speed, for each of them the number of allocated
blocks should be larger than the number of SMs. For this
reason, as reported in Figure 5, the speedup is linear with
respect to the number of GPUs only for dfree = 16.

1 2 4 8

2

4

6

8

Number of K40s

T
im

e
S
p
ee
d
u
p
(d

fi
x
=
25

)

dfree=6
dfree=11
dfree=16

Figure 5: Speedup of multi-GPU w.r.t. mono-GPU

VI. CONCLUSIONS AND FUTURE WORK

This work has presented and discussed the first all-round
GPU-tailored implementation of the cube attack, resulting in
a flexible and powerful framework, validated against known
results in the literature, and soon to be released into the
public domain. Our tool can be used against any cipher
(with minimal effort), and it supports both latest generation
GPU architectures and workload distribution over multi-GPU
systems.

We provided a careful performance analysis that shows the
feasibility and the scalability of our approach. This opens new
prospects related to the possibility of expanding the quest
for superpolys to a dimension never explored in previous
works. We plan to extend our experimental campaign to test
our framework on other well-known ciphers; in particular,
experiments against Grain-128 are already in progress. More
generally, we expect our framework to be the starting point of
future attacks, thus paving the way for further research able to
assess the real potential of the still disputed yet praised cube
attack.

REFERENCES

[1] I. Dinur and A. Shamir, “Cube attacks on tweakable black box polyno-
mials,” in Advances in Cryptology-EUROCRYPT 2009. Springer, 2009,
pp. 278–299.

[2] P.-A. Fouque and T. Vannet, Improving Key Recovery to 784 and 799
Rounds of Trivium Using Optimized Cube Attacks. Springer Berlin
Heidelberg, 2014, pp. 502–517.

[3] C. De Cannière, Trivium: A Stream Cipher Construction Inspired by
Block Cipher Design Principles. Springer Berlin Heidelberg, 2006, pp.
171–186.

[4] M. Cianfriglia, S. Guarino, M. Bernaschi, F. Lombardi, and M. Pedicini,
“A Novel GPU-Based Implementation of the Cube Attack - Preliminary
Results Against Trivium,” 15th International Conference on Applied
Cryptography and Network Security (ACNS2017), 2017, (To appear).

[5] M. Vielhaber, “Breaking one.fivium by aida an algebraic iv differential
attack,” 2007.

[6] I. Dinur and A. Shamir, Breaking Grain-128 with Dynamic Cube Attacks.
Springer Berlin Heidelberg, 2011, pp. 167–187.

[7] Z. Ahmadian, S. Rasoolzadeh, M. Salmasizadeh, and M. R. Aref,
“Automated dynamic cube attack on block ciphers: Cryptanalysis of
simon and katan,” IACR Cryptology ePrint Archive, vol. 2015, p. 40,
2015.

[8] J.-P. Aumasson, I. Dinur, W. Meier, and A. Shamir, “Cube testers
and key recovery attacks on reduced-round md6 and trivium,” in Fast
Software Encryption. Springer, 2009, pp. 1–22.

[9] A. Baksi, S. Maitra, and S. Sarkar, “New distinguishers for reduced
round trivium and trivia-sc using cube testers,” in WCC2015-9th Inter-
national Workshop on Coding and Cryptography 2015, 2015.

[10] R. Winter, A. Salagean, and R. C.-W. Phan, “Comparison of cube
attacks over different vector spaces,” in Proceedings of the 15th IMA
International Conference on Cryptography and Coding - Volume 9496.
Springer, 2015, pp. 225–238.

[11] A. Agnesse and M. Pedicini, “Cube attack in finite fields of higher
order,” in Proceedings of the Ninth Australasian Information Security
Conference - Volume 116, ser. AISC ’11. Australian Computer Society,
Inc., 2011, pp. 9–14.

[12] X. Fan and G. Gong, On the Security of Hummingbird-2 against Side
Channel Cube Attacks. Springer Berlin Heidelberg, 2012, pp. 18–29.

[13] S. Zhang, G. Chen, and LiJianhua, “Cube attack on reduced-round
Quavium,” ICMII-15 Advances in Computer Science Research, 2015.

[14] D.-J. Bernstein, “Why haven’t cube attacks broken anything?” https:
//cr.yp.to/cubeattacks.html last accessed 2016-11-11.

[15] T. Kleinjung, A. Lenstra, D. Page, and N.-P. Smart, “Using the Cloud
to determine key strengths,” in Progress in Cryptology - INDOCRYPT
2012, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, vol. 7668, pp. 17–39.

[16] M. Marks, J. Jantura, E. Niewiadomska-Szynkiewicz, P. Strzelczyk, and
K. Góźdź, “Heterogeneous GPU&CPU cluster for high performance
computing in cryptography,” Computer Science, vol. 13, no. 2, pp. 63–
79, 2012.

[17] F. Milo, M. Bernaschi, and M. Bisson, “A fast, GPU based, dictionary
attack to OpenPGP secret keyrings,” J. Syst. Softw., vol. 84, no. 12, pp.
2088–2096, dec 2011.

[18] E. Agostini, “Bitlocker dictionary attack using GPUs,” Univ. of Cam-
bridge Passwords 2015 Conference, 2015.

[19] J.-P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir, “Efficient
fpga implementations of high-dimensional cube testers on the stream
cipher grain-128,” SHARCS’09 Special-purpose Hardware for Attacking
Cryptographic Systems, p. 147, 2009.

[20] I. Dinur, T. Güneysu, C. Paar, A. Shamir, and R. Zimmermann, “An
experimentally verified attack on full grain-128 using dedicated recon-
figurable hardware,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2011,
pp. 327–343.

[21] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting with
applications to numerical problems,” in Proceedings of the twenty-
second annual ACM symposium on Theory of computing. ACM, 1990,
pp. 73–83.

[22] A. Samorodnitsky and L. Trevisan, “A PCP characterization of NP
with optimal amortized query complexity,” in Proceedings of the thirty-
second annual ACM symposium on Theory of computing. ACM, 2000,
pp. 191–199.

[23] F.-M. Quedenfeld and C. Wolf, “Algebraic properties of the cube attack,”
IACR Cryptology ePrint Archive, vol. 2013, p. 800, 2013.

[24] C. Srinivasan, U. U. Pillai, K. Lakshmy, and M. Sethumadhavan, “Cube
attack on stream ciphers using a modified linearity test,” Journal of
Discrete Mathematical Sciences and Cryptography, vol. 18, no. 3, pp.
301–311, 2015.

[25] S. O’Neil, “Algebraic structure defectoscopy,” 2007, tools for Cryptanal-
ysis 2007 Workshop sean@cryptolib.com 13859 received 23 Sep 2007,
last revised 12 Dec 2007.

760

