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Abstract. With black-box access to the cipher being its unique require-
ment, Dinur and Shamir’s cube attack is a flexible cryptanalysis tech-
nique which can be applied to virtually any cipher. However, gaining a
precise understanding of the characteristics that make a cipher vulner-
able to the attack is still an open problem, and no implementation of
the cube attack so far succeeded in breaking a real-world strong cipher.
In this paper, we present a complete implementation of the cube attack
on a GPU/CPU cluster able to improve state-of-the-art results against
the Trivium cipher. In particular, our attack allows full key recovery
up to 781 initialization rounds without brute-force, and yields the first
ever maxterm after 800 initialization rounds. The proposed attack lever-
ages a careful tuning of the available resources, based on an accurate
analysis of the offline phase, that has been tailored to the characteris-
tics of GPU computing. We discuss all design choices, detailing their
respective advantages and drawbacks. Other than providing remarkable
results, this paper shows how the cube attack can significantly benefit
from accelerators like GPUs, paving the way for future work in the area.

Keywords: Cube attack · Trivium · GPU

1 Introduction

The security of a stream cipher relies on its ability to mimic the properties of the
perfectly secure One Time Pad (OTP): predicting future keystream bits (e.g., by
recovering its inner state) must be computationally infeasible. In fact, as high-
lighted by algebraic and correlation attacks, any statistical correlation between
output bits and linear combinations of input bits is a potential security breach
for the cipher. Cryptographers are therefore caught in between implementation
requirements, which suggest the use of efficient primitives such as Feedback Shift
Registers (FSRs) or Finite State Machines (FSMs), and security requirements,
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which demand for solutions able to disguise the dependence of keystream-bits
on the inner state of the registers. Many recent stream ciphers therefore rely
upon irregular clocks, mutual clock control, non-linear and/or mutual feedback
among different registers, or combinations of these solutions.

The cube attack, proposed by Dinur and Shamir [10], can be classified as an
algebraic known-plaintext attack. Assuming that a chunk of keystream can be
recovered from a known plaintext-ciphertext pair, the attack allows determining
a set of linear equations binding key-bits. However, cube attacks significantly
deviate from traditional algebraic attacks in that the equations are not recov-
ered symbolically, but rather extracted through exhaustive searches over selected
public/IV bits – the edges of the cubes the attack is named after. The possibility
that a cube yields a linear equation depends on both its size and on the alge-
braic properties of the cipher. Since the Algebraic Normal Form (ANF) of the
cipher (that is, its representation as a binary polynomial) is generally unknown
beforehand, in practice the attack usually runs without clear prior insights into
a convenient strategy for selecting the cubes – an approach made possible by
the fact that the attack only requires black-box access to the attacked cipher.
Exploring cubes of different (possibly large) size, trying many different sets of
indices, and varying the binary assignment of the public bits not belonging to
the tested cube are all promising solutions, but they all come at an exponential
cost. In a sense, cube attacks can be therefore assimilated to Time-Memory-
Data Trade-Off (TMDTO) attacks, as their success rate strongly depends on
the extensiveness of the pre-computation stage, on the memory available to
store the results of that stage, and on the amount of data usable to implement
it. Consequently, identifying the most favourable design choices is the main pillar
of a possibly successful cube attack.

Contributions. The present paper motivates and discusses in depth an imple-
mentation for Graphics Processing Unit (GPU) of the cube attack. The target
cipher is Trivium [8,22], already considered in the literature to test the viability
of the cube attack [10,14]. Our contributions can be summarized as follows: (i)
We tailor the design and implementation of the cube attack to the characteris-
tics of GPUs, in order to fully exploit parallelization while coping with limited
memory. Our framework is extremely flexible and can be adapted to any other
cipher at no more cost than some fine (performance) tuning, mostly related to
memory allocation. (ii) We show the performance gain with respect to a CPU
implementation, including results obtained on latest generation GPU cards. (iii)
Our implementation allows for exhaustively assigning values to (subsets of) pub-
lic variables with negligible additional costs. This means extending the quest for
superpolys to a dimension never explored in previous works, and, by not being
tied to a very small set of IV combinations, potentially weakening one of the
basic requirements of the cube attack, that is, the assumption of a completely
tweakable IV . (iv) Even though we run the attack with only a few prelimi-
nary sets of cubes – specifically selected to both validate our code and compare
our results with the literature – our findings improve on the state-of-the-art for
attacks against reduced-round versions of Trivium.
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Roadmap. This paper is organized as follows: Sect. 2 introduces the cube attack
and the targeted cipher Trivium; our implementation of the attack is described
in Sect. 3, whereas experimental results are reported and discussed in Sect. 4;
Sect. 5 gives an overview of related works; finally, Sect. 6, draws conclusions and
suggests possible directions for future work.

2 Preliminaries

In this section, we first describe the theoretical implant of the cube attack, and
we then briefly introduce Trivium. More details about Trivium are reported in
AppendixA.

The Cube Attack. Let z denote a generic keystream bit produced by a stream
cipher E . z is the result of a function E : Fn+k

2 → F2, computed over the n + k
input bits obtained from an Initial Vector IV of length n and a secret key K of
length k. It is well known that z can be expressed as z = p(x,y), where p is the
polynomial representation of E, x = (x1, . . . , xn) is the vector of public variables
(IV ), y = (y1, . . . , yk) is the vector of secret variables (K), and all variables in
p appear with degree 1, at most. The cube attack relies on extracting from p a
set of linear equations binding private variables in y, through a suitable offline
pre-computation phase involving public variables in x.

Let I = {i1, . . . , im} ⊂ {1, . . . , n} and let us introduce the complement I =
{1, . . . , n}\I of the set I. With a slight abuse of notation, let us consider variables
in x as partitioned by I: x = (xI ,xI), i.e., we tell apart the variables xI indexed
by I from those xI indexed by its complement I. Let tI = xi1 · · · xim be the
monomial induced by I, that is, the product of all variables in xI . By writing
tI(xI) we want to stress that tI contains only variables in xI . If we factor tI(xI)
out of p(x,y) we obtain

p(x,y) = tI(xI) · pS(I)(x,y) + q(x,y)

where the quotient pS(I)(x,y) of the division is called the superpoly of I in p,
whereas q(x,y) is the remainder of the division.

Now, for any binary vector vI , we consider a fixed assignment for variables
xI

1, and let CI(vI) denote the cube induced by I and vI , that is, the set of all 2m

possible binary assignments to x in which variables xI assume values specified
by the binary vector vI and the remaining variables in xI take all the possible
combinations. It is easy to verify that all monomials in pS(I) do not contain any
of the variables xI (i.e., pS(I)(x,y) = pS(I)(xI ,y)), whereas all monomials in q
do not contain at least one of the variables in xI . For this reason, regardless of
y, the sum of p(x,y) over all elements v of CI(vI) yields [10]

∑

v∈CI(vI)

p(v,y) = pS(I)(vI ,y) (1)

which obviously does not depend on variables xI anymore.
1 The standard assumption is vI = 0, but this is not actually required.
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If pS(I)(vI ,y) is linear, the monomial tI(xI) is called a maxterm for p with
the assignment vI . If we can identify maxterms and find the symbolic expression
of their superpolys, we obtain a system of linear equations that can be used to
recover the secret key.

As vI is always clear from the context, to improve readability in the following
we simply denote CI(vI) and pS(I)(vI ,y) as CI and pS(I)(y), respectively.

Trivium. Trivium [8] is a stream cipher conceived by Christophe De Cannière
and Bart Preneel, part of the eSTREAM portfolio. It generates up to 264 bits
of output from an 80-bit key K and an 80-bit Initial Vector IV , and it shows
remarkable resistance to cryptanalysis despite its simplicity and its excellent
performance. Trivium is composed by a 288-bit internal state consisting of three
shift registers of length 93, 84 and 111, respectively. The feedback to each of
these registers and the output bit of the cipher are obtained through non-linear
combinations involving in total 15 out of the 288 internal state bits. To initialize
the cipher, K and IV are written into two of the shift registers, with a fixed
pattern filling the remaining bits. 1152 initialization rounds guarantee that the
output begins to be produced only after all key-bits and IV -bits have been
sufficiently mixed together to define the internal state of the registers.

3 The Proposed GPU Implementation of the Attack

In this section, we present, detail, and discuss our attack, designed to run on
a cluster equipped with Graphics Processing Units (GPU). As previously men-
tioned, the success of a cube attack is highly dependent on suitable implemen-
tation choices. In order to better explain our own approach, we start with an
analysis of the cube attack from a more implementative perspective.

3.1 Practical Cube Attack

At a high level, any practical implementation of the cube attack requires per-
forming the following steps:

S1 Find as many maxterms as possible;
S2 For each maxterm, find the corresponding linear equation(s);
S3 Solve the obtained linear system.

Step S1. This is the core of the attack, where cubes that yield linear equa-
tions are identified. Choosing candidate maxterms (i.e., cubes) is non-trivial.
Intuitively, the degree of most maxterms lies in a specific range that depends on
the (unknown) degree distribution of the monomials of the polynomial p. If the
degree of tI is too small, then pS(I) is most likely non-linear, but if the degree of
tI is too large, then pS(I) will probably be constant (e.g., null). Moreover, since
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the complexity of the offline phase scales exponentially with |I|, the degree of
tested potential maxterms is strongly influenced by practical limitations.

In [10], the authors propose a random walk to explore a maximal cube CImax ,
i.e., starting from a random subset I ⊂ Imax and iteratively testing the superpoly
pS(I) to decide whether the degree of tI should be increased or decreased. The
underlying idea is to use a probabilistic approach to identify the optimal size |I|.
In [14], the authors evaluate the cipher upon all vertices of a maximal cube CImax ,
store the results in a table T of size |T | = 2|Imax|, and then apply the Moebius
transform to the entire table T , thus computing at once the sums over

(|Imax|
d

)

sub-cubes of CImax of degree d, for d = 0, . . . , |Imax|. These cubes are all possible
sub-cubes of CImax in which the variables outside the cube have been set equal
to 0. In this case the rationale is minimizing processing cost by reusing partial
computations as much as possible. Interestingly, the authors of [14] show that
specific cubes perform better than others, at least for reduced-round variants of
Trivium, and use their findings to select the most promising maximal set Imax.

None of these two strategies is suitable for GPUs. The stochastic nature
of the random walk prevents the sequence of steps from being determined a
priori, since the computation is performed only when (and if) needed. On the
other hand, the Moebius transform requires a rigid schema of calculations and
a large number of alternating read and write operations in memory that must
be synchronized. Both approaches are conceived for implementations in which
computational power is a constraint (while memory is not), and all advantages
of using the Moebius Transform are lost in case of parallel processing. We rather
perform an exhaustive search over a portion of a maximal cube, a solution that
is highly parallelizable and feasible with our computational resources.

For each candidate maxterm tI , we need to verify whether the superpoly
pS(I) is linear. The goal being recovering key bits, any fixed assignment of vari-
ables xI with the bit vector vI can be used to get rid of variables. In order to
guarantee that the degree of each superpoly is reduced to the bare minimum,
the assignment vI to 0 is usually preferred, but we argue that this is not neces-
sarily the best choice, as motivated later in Sect. 4.2. In any case, at this stage
the superpoly pS(I) only depends on y. In principle, assessing the linearity of
pS(I)(y) requires finding all of its coefficients, but efficient probabilistic linear-
ity tests [7,21] can safely replace deterministic ones in most practical settings.
Probabilistic tests involve verifying if

pS(I)(u1 + u2) = pS(I)(u1) + pS(I)(u2) + pS(I)(0) (2)

holds for random pairs of vectors u1,u2. Practically, this means evaluating
numerically four sums:

∑
v∈CI

E(v,0),
∑

v∈CI
E(v,u1),

∑
v∈CI

E(v,u2), and∑
v∈CI

E(v,u1 + u2).
Probabilistic tests rely on the fact that (2) must be true for all u1,u2 if pS(I)

is linear, whereas, in general, it holds with probability 1
2 . In particular, as done

for previous cube attacks [10,14], we will resort to a complete-graph test [21],
which guarantees a slightly lesser accuracy than the (truly-random) BLR test [7]
with far fewer evaluations of pS(I). Let us remark that what ultimately matters in
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the envisaged scenario is identifying “far-from-linear” superpolys [20]. To clarify,
let us consider the superpoly pS(I)

pS(I)(y) = l(y) +
k∏

i=1

yi

formed by a sum l(y) of linear terms, plus one nonlinear term given by the
product of all variables in y. Despite the equality pS(I)(y) = l(y) is formally
wrong (the degree of pS(I) is as large as k), pS(I)(u) = l(u) is numerically
correct for all u ∈ F

k
2 , except u = (1, 1, . . . , 1). In other words, mistaking pS(I)

for linear has practical consequences only if u = (1, 1, . . . , 1).

Steps S2 and S3. Step S2 consists in finding the symbolic expression of the
superpoly of all identified maxterms, and the free term of the corresponding
equation. Again, this turns into a set of numerical evaluations: the free term of
pS(I)(y) is

pS(I)(0) =
∑

v∈CI

E(v,0)

whereas the coefficient of each variable yi is

pS(I)(ei) + pS(I)(0) =
∑

v∈CI

E(v, ei) +
∑

v∈CI

E(v,0)

where ei is the unit vector with all null coordinates except yi = 1. Once the poly-
nomial pS(I)(y) is found, the attack assumes the availability of the 2m keystream
bits produced in correspondence to a fixed (unknown) assignment to the vari-
ables y, as the variables x take all possible assignments in CI . This produces
the linear equation

pS(I)(y) =
∑

v∈CI

E(v,y)

whose left side is a linear combination of the key variables y with coefficients
found offline, whereas the right side is a number found online, and whose solution
is the sought unknown assignment to y.

Finally, Step S3 just requires solving the obtained linear system with any
suitable technique described in the literature.

3.2 The Setting

Generally speaking, GPUs are processing units characterized by the following
advantages and limitations:
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Computing: Each unit features a large number (i.e., thousands) of simple cores,
that make possible running a much higher number of parallel threads com-
pared to a standard CPU. More precisely, the GPU’s basic processing unit is
the warp consisting of 32 threads each. Threads are designed to work on 32-
bit words, and the performance is maximized if all threads belonging to the
same warp execute exactly the same operations at the same time on different
but contiguous data.

Memory: The so-called global memory available on a GPU is limited, typi-
cally between 4 and 12 GB. Each thread can independently access data (ran-
dom access is fully supported, but costly performance-wise). However, when
threads in a warp access consecutive 32-bit words, the cost is equivalent to
a single memory operation. Concurrent readings and writings by different
threads to the same resources, which require some level of synchronization,
should be avoided to prevent serialization that defeats parallelism.

The basic step of the attack is the sum of E(v,y) over all elements v of a
cube CI . Each time we sum over a cube, the key variables y are fixed, either
to a random uj for the linearity tests, or to 0 and to versors ei for determining
the superpoly. In both cases exactly the same sum

∑
v∈CI

E(v,uj) must be
performed for all elements of a set of keys {u1, . . . ,uM}.

We define the following strategy for carrying out the sums over a cube with
the goal of maximizing the parallelization and fully exploiting at its best the
computational power offered by GPUs:

– Assigning to all the threads within a warp the computation of the same cube
CI but with a different key uj . This choice guarantees that all threads perform
the same operation at the same time for the entire computation.

– Leveraging the GPU computational power to calculate all the elements of a
cube CI , providing to the threads just a bit-mask representing the set I. With
this approach we can exploit all available GPU memory to store the cubes
evaluations and minimize, at the same time, the number of memory access
operations.

– Defining a keystream generator function E(x,y) which outputs a 32-bit word,
and letting each thread work on the whole word, fully leveraging the GPU
computing model. This approach offers two remarkable benefits: (i) consid-
ering 32 keystream bits altogether is equivalent to concurrently attacking 32
different polynomials, and (ii) working on 32-bit integers fits much better
with the GPUs features, whereas forcing the threads to work on single bits
would critically affect the performance of the attack. Therefore, attacking 32
keystream bits altogether reduces (of a factor 32) the memory needed for
storing the cubes’ evaluation, thus imposing some limitations on the size of
the cubes to be tested, as we will clarify later.

– Choosing the number M of keys to be a multiple of the warp size in order
to perform the probabilistic linearity test on 32 keystream bits at the same
time and for all M keys.
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3.3 The Attack

A severe constraint in any GPU implementation is represented by the amount
of memory |T | currently available on GPUs. Moreover, for each cube, we need
to consider M different keys in order to run the linearity test, thus reducing the
amount of available memory even further to |T |/M . Storing single evaluations of
the cipher in T means testing only sub-cubes of a maximal cube of size |Imax| =
log2(|T |/M). With the memory available in current GPUs, log2(|T |/M) is not
large enough for any reasonably strong cipher. The new approach we propose is
highly parallelizable, it can fully exploit the computational resources offered by
GPU, and it is able to exploit GPU memory to test high order maximal cubes.

The proposed design of the attack relies on the following rationale: exploring
only a portion of the maximal cube CImax , considering only subsets I ⊆ Imax

characterized by a non-empty minimal intersection Imin. Quite naturally, a sim-
ilar design leads to two distinct CUDA2 kernels, respectively responsible for: (1)
computing many variants of the cube CImin , one for each of the possible com-
binations of the indices in Imax \ Imin, and writing the results in memory; (2)
combining the stored results to test all cubes CI such that Imin ⊆ I ⊆ Imax.
Following this approach, the size of the explored Imax can be raised to |Imax| =
|Imin| + log2(|T |/M), with read and write memory operations carried out by
different kernels.

According to the notation introduced in Sect. 2, the public variables are x =
(x1, . . . , xn). Now, let us distinguish these n public variables into three sets
xfix = (xi1 , . . . , xidfix

), xfree = (xj1 , . . . , xjdfree
), and x∗, of size dfix, dfree, and

n − d, respectively, where d = dfix − dfree. The variables xfix correspond to the
fixed components of CImax identified by Imin, i.e., Imin = {i1, . . . , idfix}, whereas
the variables xfree correspond to the remaining free components of CImax , i.e.,
Imax \ Imin = {j1, . . . , jdfree} and |Imax| = d. The variables u∗ are the remaining
public variables that fall outside Imax.

The two kernels of our attack can be described as follows:

Kernel 1: It uses 2dfree warps. Since, as described before, the 32 threads belong-
ing to the same warp perform exactly the same operations but for different
keys, in the following we simply consider a representative thread per warp and
ignore the private variables y.3 For t = 0, . . . , 2dfree − 1, thread (i.e., warp) s
sums E(u,y) over each vertex of the cube Cs

Imin
of size dfix determined by the

assignment of the dfree-bit representation ufree of integer s to the variables
xfree and of 0 to the variable u∗. Finally, thread s writes the sum in the sth

entry of table T , so that, at the end of the execution of the kernel, each entry
of T contains the sum over a cube of size dfix. These evaluations allow for
testing the monomial tImin with all the aforementioned assignments to the
other n − dfix variables.

2 CUDA is the software framework used for programming Nvidia GPUs.
3 The work that here is assigned to a single thread can be actually split among any

number of threads, reassembling the results at the end. We will not consider this
possibility here for the sake of clarity.
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Kernel 2: By simply combining the values stored in T at the end of Kernel
1, it is now possible to explore cubes of potentially any size dfix + δ, with
0 ≤ δ ≤ dfree. Although the exploration can potentially follow many other
approaches (e.g., a random walk as in [10]), the large computing power of
our platform suggests to test cubes exhaustively. Moreover, we extend the
exhaustive search to an area never reached, to the best of our knowledge, in
the literature. For all I such that Imin ⊆ I ⊆ Imax, this kernel considers all
variants of cube CI obtained assigning all possible combinations of values to
the variables in Imax\I. More precisely, for each possible choice of δ ∈ [0, dfree],
there are exactly

(
dfree

δ

)
2dfree−δ distinct cubes of size dfix + δ available. In fact,

we can choose δ free variables (the additional dimensions of the cube) in(
dfree

δ

)
different ways, and we can choose the fixed assignment to the remaining

dfree − δ variables in any of the 2dfree−δ possible combinations.

As a matter of fact, the number of cubes considered in [14] is
∑dfree

δ=0

(
dfree

δ

)
=

2dfree , whereas the number of cubes tested by our approach is significantly larger,
namely,

∑dfree
δ=0 2dfree−δ

(
dfree

δ

)
= 3dfree . We would like to highlight that Kernel 2

is computationally dominated by Kernel 1, so the cost of our exhaustive search
is negligible. Therefore, our design entails considering any possible assignment
to variables outside the cube, to finally address the common conjecture (never
proved in the literature), that assigning 0 is the best possible solution.

Let us underline that, in order to validate our implementation of the cube
attack, we symbolically evaluated the polynomial p of Trivium up to 400 ini-
tialization rounds, and used p to identify all possible maxterms and their super-
poly. We then ran the attack to find all maxterms whose variables belonged
to selected sets I. Our experimental findings matched the symbolical findings.
Further experimental validation of our code is reported in Sect. 4.

3.4 Performance Analysis

To evaluate the performance of our GPU based solution, we developed both
a CPU and a GPU version of the cube attack. The cluster we used for the
experiments is composed by 3 nodes, each equipped with 4 Tesla K80 with 12 GB
of global memory and 4 Intel Xeon CPU E5-2640 with 128 GB of RAM. The
CPU experiments were conducted on a parallel version based on OpenMP that
exploits 32 cores of the four Intel(R) Xeon(R) CPU E5-2640. Each performance
test was executed 5 times and the average time is reported. It is worth noticing
that all versions rely on the same base functions to implement Trivium.

In Fig. 1a, we report the speed-up gained by the GPU version with respect
to the parallel CPU version. We evaluated the two solutions over growing size
maximal cubes CImax , in which we anchor the size of Imin, consequently causing
the size of the set Imax \ Imin to exponentially increase. Overall, the experiments
show that the benefit of using the GPU version grows with the number of free
variables dfree considered, reaching a speed-up up to 70× when dfree = 13. The
rationale is that the execution time of the CPU version increases almost linearly
with dfree from the very beginning, whereas a similar trend can be observed for
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Fig. 1. Performance experiments

the GPU version only when the number of blocks in use gets larger than the
number of Streaming Multiprocessors (SMs) of the GPU, which happens when
dfree ≥ 9 in our case. Of course, slight fluctuations are possible, mostly due to
the complex interactions among the multiple cache levels of a modern CPU.
Moreover, we evaluated how the GPU solution scales when dfree increases. As
reported in Fig. 1b, our solution scales linearly with the size of the problem,
i.e., exponentially with the size of the sub-cubes CImin , thus paving the way for
future works in the area.

Finally, we ran the attack under the control of the Nvidia profiler in order
to measure the ALU occupancy achieved by our kernels. Kernel 1 is invoked
just once per run to fill the whole table T , with an occupancy consistently over
95% when dfree ≥ 10. Kernel 2 is instead invoked once per each δ ∈ [0, dfree], to
compute all available cubes of size dfix + δ. The maximum occupancy exceeds
95% as soon as dfree ≥ 12, with an average of approximately 50%. In either
case the impact of dfix, which determines the load of each thread, is negligible.
Considering that dfree should be maximized to improve the attack success rate,
our kernels guarantee an excellent use of resources in any realistic application.
For instance, in our experiments discussed in Sect. 4 we set dfree = 16, which
guarantees an occupancy above 99% for Kernel 1, and a maximum occupancy
above 98% for Kernel 2.

4 Results

Finally, this section reports the results obtained by our GPU implementation of
the cube attack against reduced-round Trivium. We recall that the attack ran
on a cluster composed by 3 nodes, each equipped with 4 Tesla K80 with 12 GB
of global memory and 4 Intel Xeon CPU E5-2640 with 128 GB of RAM.

As mentioned in Sect. 3.3, we performed a formal evaluation of our imple-
mentation, by checking our experimental results against Trivium’s polynomials,
explicitly computed up to 400 initialization rounds. In the following, the number
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of initialization rounds instead matches (and slightly overtakes) the best results
from the literature, thus reaching a point where a symbolic evaluation would be
prohibitive. Still, the results we exhibit are obtained from experiments specif-
ically designed to reproduce tests carried out in the recent past [14], so as to
provide, at the same time: (i) a direct comparison of our results with the state-
of-the-art; (ii) an immediate means to assess the advantages of our approach,
and (iii) a further validation of the correctness of our code.

Experimental Setting. In our attack, we consider two different reduced-round
variants of Trivium, corresponding to 768 and 800 initialization rounds, respec-
tively. As explained and motivated in Sect. 3.2, in our scheme, each call to Triv-
ium produces 32 key-stream bits, which we use in our concurrent search for
superpolys. The most significant practical consequence of a similar construction
is the ability to devise attacks to Trivium reduced to any number of initializa-
tion rounds ranging from 768 to 831, at the cost of just two attacks, although
the number of available superpolys decreases with the number of rounds. As a
matter of fact, the jth output bit after 768 rounds can also be interpreted as
the (j − i)th bit of output after 768 + i initialization rounds, for any j ≥ i. In
other words, an attack to Trivium reduced to 768 + i initialization rounds can
count upon all superpolys found in correspondence of the jth output bit after
768 rounds, for all j ≥ i.

For each of the two attacks (768 and 800 initialization rounds), we ran a set
of independent runs, each using a different choice for the pair of sets of variables
Imin, Imax (with Imin ⊂ Imax) that define the minimal and maximal tested cubes
CImin and CImax . The size of Imin and Imax \ Imin is dfix = 25 and dfree = 16,
respectively, for all runs, so that all maximal cubes have size d = dfix+dfree = 41.
Peculiarly to our implementation, when we test the monomial composed of all
variables in some set Imin ⊆ I ⊆ Imax, we exhaustively assign values to all public
variables in Imax \ I, thus concurrently testing the linearity of 241−|I| possibly
different superpolys. This feature of our attack – a possibility overlooked in
the literature, but almost free-of-charge in our framework – provides primary
benefits, as described in Sect. 4.2.

In all the reported experiments, we use a complete-graph linearity test based
on combining 10 randomly sampled keys.

4.1 Summary of Results

As mentioned before, we implemented two attacks, against Trivium reduced to
768 (Trivium-768 in the following) and 800 (Trivium-800) initialization rounds,
respectively. In both cases, our setting allows obtaining superpolys corresponding
to 32 output bits altogether, at the cost of a single attack.

Results Against Trivium-768. For the attack against Trivium-768, we took
inspiration from [14]: we launched 12 runs based on 12 different pairs Imin, Imax,
chosen so as to guarantee that each of the 12 linearly independent superpolys
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found in [14] after 799 initialization rounds was to be found by one of our runs.
The rationale of reproducing results from [14] was to both test the correctness
of our implementation, and provide a better understanding of the advantages
of our implementation with respect to the state-of-the-art. In this sense, let us
highlight that a single run of ours cannot be directly compared with all results
presented in [14], because each of our runs only explores the limited portion of
the maximal cube CImax composed by all super-cubes of CImin .

To better describe our results, let us introduce the binary matrix A whose
element A(i, j) is the coefficient of variable yj in the ith available superpoly. The
rank of A, denoted rk(A), clearly determines the number of key bits that can be
recovered in the online phase of the attack based on the available superpolys,
before recurring to brute-force.

As described before, the superpolys yielded by the ith output bit after round
768 are usable to attack Trivium for any number of initialization rounds between
768 and 768+ i. It is possible to define 32 different matrices A768, . . . , A799: A768

includes all superpolys found, while each matrix A768+i is obtained by incre-
mentally removing the superpolys yielded by output bits 0, . . . , i − 1. Figure 2a
shows rk(Ai) as a function of i, comparing our findings with those of [14].

Overall, our results extend the state-of-the-art in a remarkable way, especially
if we consider that our quest for maxterms was circumscribed to multiples of 12
base monomials of degree 25. In particular, let us highlight a few aspects that
emerge from Fig. 2a:

– Since our runs were designed to include all 12 maxterms found in [14] after
799 initialization rounds, it is not surprising that rk(A799) is at least 12. Yet,
it is indeed larger: we found 3 more linearly independent superpolys, reaching
rk(A799) = 15.

– Although we did not force our tested cube to include the maxterms found
in [14] after 784 rounds, we have rk(A784) = 59, compared with rank 42
found in [14].

– Finally, and probably most importantly, our attack allows a full key recovery
up to 781 initialization rounds.

Selected superpolys that guarantee the above ranks are reported in AppendixB,
together with the corresponding maxterms. Very interesting is also how novel
superpolys were found, a point that is better described in the following.

Results Against Trivium-800. To provide a further test of the quality of
our attack, we launched a preliminary attack against Trivium-800. We kept
unvaried all the parameters of the attack (dfix = 25, dfree = 16, 32 output
bits attacked altogether), but this time we only launched 4 runs, and we chose
the sets Imin, Imax at random. In total, we were able to find a single maxterm
corresponding to 800 rounds, and no maxterms afterwards. This maxterm and
the corresponding superpoly are also reported in AppendixB. Although our
findings only allow to cut in half the complexity of a brute force attack, this is the
first ever superpoly found considering more than 799 initialization rounds. We
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Fig. 2. Our results

recall that our limited results should not appear as surprising: as previous work
suggests [10,14], when the number of initialization rounds grows, a cube attack
should increase the average degree of candidate maxterms and/or implement
specific strategies for the selection of the index sets [14].

4.2 Further Discussion

Hereafter, we provide a more detailed analysis and a further discussion of our
findings, considering two aspects in particular: the reliability of commonly used
linearity tests, and the peculiar advantages of our attack design. Unless otherwise
specified, in the following we always focus on Trivium-768.

On Probabilistic Linearity. A common practice in the cube attack related
literature consists in using a probabilistic linearity test, meaning that a (small)
chance exists that the superpolys found by an attack are not actually linear. In
particular, the best results obtained with the cube attack against Trivium use
a complete-graph test, which, with respect to the standard BLR test, trades-off
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accuracy for efficiency. The viability of a similar choice is supported by previous
work [12,21], showing that the complete-graph test behaves essentially as a BLR
test in testing a randomly chosen function f , with the quality of the former being
especially high if the nonlinearity (minimum distance from any affine function)
of f is large, that is, when the result of the test is particularly relevant.

Following the trend, we chose to implement a complete-graph test based
on a set of 10 randomly chosen keys, exactly as done in [14]. However, while
increasing the number of tests done during the attack was costly for us (it
impacts on memory usage), implementing further test on the superpolys found
at the end of the attack was not. We therefore decided to put our superpolys
through additional tests involving other 15 keys chosen uniformly at random.
Figure 2b compares rk(Ai) as a function of i, for our full results and our filtered
results, in which all superpolys that failed at least one of the additional tests
have been removed. Let us stress once more that these two sets of results cannot
be defined as wrong and correct, but they rather correspond to two different
levels of trust in the found superpolys. In a sense, choosing between the two sets
is equivalent to selecting the desired trade-off between efficiency and reliability
of the attack: our full results permit a faster attack, which however may fail
for a subset of all possible keys. Of course, many middle ways/intermediate
approaches are possible. Investigating whether the reason of these failing tests
is related to any of our design choices is left to future work.

On Using 32 Output Bits. A significant novelty of our implementation con-
sists in the ability to concurrently attack 32 different polynomials, which describe
32 consecutive output bits of the target cipher. This choice is induced by GPUs
features – as discussed in Sect. 3.2 – yet it is natural to assess what benefits it
introduces. In Sect. 4.1 we showed that looking at 32 output bits altogether can
be considered a way to concurrently attack 32 different reduced-round variants of
Trivium. However, aiming to extend the attack to the full version of the cipher,
our implementation can be used to check whether the same set of monomials
yield different superpolys, hopefully involving different key variables, when we
focus on different output bits. To this end, let us introduce a new set of matri-
ces B0

768, . . . , B
31
768, where each Bj

768 is obtained considering only the superpolys
yielded by output bits 0, . . . , j after 768 initialization rounds (i.e., A768 = B31

768).
Figure 2c shows rk(Bj

768) as a function of j, for both our full results and our
filtered results. What the figure highlights is that considering several output
bits altogether for the same version of the cipher, albeit possibly causing issues
related to memory usage, does introduce the expected benefit, indeed a remark-
able benefit if the matrix rank is initially (i.e., when j = 0) low. This is the
first ever result showing that considering a larger set of output bits is a viable
alternative to exploring a larger cube.

On the Advantages of the Exhaustive Search. As described before, our
implementation allows to find significantly more linearly independent superpolys
than previous attempts from the literature. One of the reasons of our findings
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is the parallelization that makes possible to carry out, at a negligible cost, an
exhaustive search over all public variables in Imax \ I when the cube CI is under
test. Figure 2d, again focusing on rk(Ai), compares our full results with results
obtained without exhaustive search (shortened “no ex.”), i.e., setting all vari-
ables in Imax \ I to 0, as usually done in related work. What emerges is that
through an exhaustive search it is indeed possible to remarkably increase rk(Ai).
Significantly, the exhaustive search is what allows us to improve on the state-of-
the-art for i = 799, which, among other things, suggests that the benefits of the
exhaustive search are particularly relevant when increasing the number of tested
cubes would be difficult otherwise (e.g., by considering other monomials).

Another consequence of implementing an exhaustive search is that we found
many redundant superpolys, i.e., superpolys that are identical or just linearly
dependent with the ones composing the maximal rank matrix Ã. A similar find-
ing is extremely interesting, because we expect it to provide a wide choice of
different IV combinations yielding superpolys that compose a maximal rank
sub-matrix Ã, thus weakening the standard assumption that cube attacks require
a completely tweakable IV .

5 Related Work

The cube attack is a widely applicable method of cryptanalysis introduced by
Dinur and Shamir [10]. The underlying idea, similar to Vielhaber’s AIDA [24],
can be extended, e.g., by assigning a dynamic value to IV bits not belong-
ing to the tested cube [3,11], or by replacing cubes with generic subspaces of
the IV space [25], and it is used in so-called cube testers to detect nonrandom
behaviour rather than performing key extraction [4,5]. Despite the cube attack
and its variants have shown promising results against several ciphers (e.g., Triv-
ium [10], Grain [11], Hummingbird-2 [13], Katan and Simon [3], Quavium [26]),
Bernstein [6] expressed harsh criticism to the feasibility and convenience of cube
attacks. Indeed, a general trend for cube attacks is to focus on reduced-round
variants of a cipher, without any evidence that the full version can be equally
attacked. However, while Bernstein suggests that the cube attack only works if
the ANF of the cipher has low degree, Fouque and Vannet [14] argue (and, to
some extent, experimentally show) that effective cube attacks can be run not
aiming at the maximum degree of the ANF, but rather exploiting a nonran-
dom ANF by searching for maxterms of significantly lower degree. Along this
line, O’Neil [18] suggests that even the full version of Trivium exhibits limited
randomness, thus indicating the potential vulnerability of this cipher to cube
attacks.

In recent years, several implementations of the cube attack attempted
at breaking Trivium, our target cipher described in Sect.A. Quedenfeld and
Wolf [19] found cubes for Trivium up to round 446. Srinivasan et al. [23] intro-
duces a sufficient condition for testing a superpoly for linearity in F2 with a time
complexity O(2c+1(k2 + k)), yielding 69 extremely sparse linearly independent
superpolys for Trivium reduced to 576 rounds. In their seminal paper [10], Dinur
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and Shamir found 63, 53, and 35 linearly independent superpolys after, respec-
tively, 672, 735, and 767 rounds. Fouque and Vannet [14] even improve over Dinur
and Shamir, by obtaining 42 linearly independent superpolys after 784 rounds,
and 12 linearly independent superpolys (plus 6 quadratic superpolys) after 799
rounds. To the best of our knowledge, these are the best results against Trivium
to date, making our attack comparable to (or better than) the state-of-the-art.

Distributed computing and/or parallel processing have been explored in the
literature to render attacks to crypto systems computationally or storage-wise
feasible/practical. Smart et al. [15] develop a new methodology to assess crypto-
graphic key strength using cloud computing. Marks et al. [16] provide numerical
evidence of the potential of mixed GPU(AMD, Nvidia) and CPU technology to
data encryption and decryption algorithms. Focusing on GPU, Milo et al. [17]
leverage GPUs to quickly test passphrases used to protect private keyrings of
OpenPGP cryptosystems, showing that the time complexity of the attack can
be reduced up to three-orders of magnitude with respect to a standard proce-
dure, and up to ten times with respect to a highly tuned CPU implementa-
tion. A relevant result is obtained by Agostini [2] leveraging GPUs to speed
up Dictionary Attacks to the BitLocker technology commonly used in Windows
OSes to encrypt disks. Finally, and most closely related to the present work,
Fan and Gong [13] make use of GPUs to perform side channel cube attacks
on Hummingbird-2. They describe an efficient term-by-term quadraticity test
for extracting simple quadratic equations, leveraging the cube attack. Just like
us, Fan and Gong speed-up the implementation of the proposed term-by-term
quadraticity test by leveraging GPUs and finally recovering 48 out of 128 key bits
of the Hummingbird-2 with a data complexity of about 218 chosen plaintexts.
However, we present a complete implementation of the cube attack thoroughly
designed and optimized for GPUs. Our flexible construction allows an exhaustive
exploration of subsets of IV bits, thus overcoming the limitations of dynamic
cube attacks, which try to find the most suitable assignment to those bits by
analyzing the target cipher.

6 Conclusions and Future Work

This work has discussed in depth an advanced GPU implementation of the
cube attack aimed at breaking a reduced-round version of Trivium. The imple-
mented attack allows extending the quest for superpolys to a dimension never
explored in previous works, and weakens the previous cube attack assumption
of a completely tweakable IV . An extensive experimental campaign is discussed
and results validate the approach and improve over the state-of-the-art attacks
against reduced-round versions of Trivium.

The tool, that we expect to release into the public domain, opens new per-
spectives by allowing a more comprehensive and hopefully exhaustive analysis of
stream-ciphers security. For instance, along the line proposed in [1], we envisage
developing our implementation to test the effectiveness of the generalized cube
attack over Fn.
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A Trivium Specifications

Trivium [8] is a synchronous stream cipher conceived by Christophe De Cannière
and Bart Preneel, not patented, and specified as an International Standard under
ISO/IEC 29192-3. Trivium combines a flexible trade-off between speed and gate
count in hardware, and a reasonably efficient software implementation. Citing [9]:
“Trivium is a hardware oriented design focussed on flexibility. It aims to be
compact in environments with restrictions on the gate count, power-efficient on
platforms with limited power resources, and fast in applications that require
high-speed encryption”. Particularly interesting is the fact that any state bit
stays unused for at least 64 iterations after it has been modified. This means
that up to 64 iterations can be parallelized and computed at once, allowing for
a factor 64 reduction in the clock frequency without affecting the throughput.

Trivium generates up to 264 bits of output from an 80-bit key K and an
80-bit Initial Vector IV , and it shows remarkable resistance to cryptanalysis
despite its simplicity and its excellent performance. The 80-bit key K and the
80-bit IV , are used in Trivium to initialize three FSRs of length 93, 84 and 111,
respectively. The internal states of the three registers are denoted (s1, . . . , s93),
(s94, . . . , s177) and (s178, . . . , s288) respectively. Fifteen out the 288 internal state
bits are used at each round to compute the feedbacks to the three registers and
the output bit of the cipher. However, to obtain a better mixing of the seed and
to guarantee that each output bit is a complex non-linear function of all key-bits
and IV -bits, the cipher undergoes 1152 initialization rounds without producing
any output. In detail, the initial seed of the three registers is defined as follows:

(s1, . . . , s93) ← (K1, . . . ,K80, 0, . . . , 0)
(s94, . . . , s177) ← (IV1, . . . , IV80, 0, . . . , 0)

(s178, . . . , s288) ← (0, . . . , 0, 1, 1, 1)

For each t ≥ 1, the internal state of the cipher is updated as follows4:

(s1, s2, . . . , s93) ← (s243 + s286 · s287 + s288 + s69, s1, . . . , s92)
(s94, s95, . . . , s177) ← (s66 + s91 · s92 + s93 + s171, s94, . . . , s176)

(s178, s179, . . . , s288) ← (s162 + s175 · s176 + s177 + s264, s178, . . . , s287)

Finally, for each t > 1152, the output bit zt is computed as:

zt ← s66 + s93 + s162 + s177 + s243 + s288

4 Symbols + and · denote sum and product over F2, i.e., bitwise XOR and AND.
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B Tables of Maxterms and Superpolys

Trivium-781
maxterm bits superpoly round

3, 6, 8, 10, 12, 14, 18, 19, 20, 23, 25, 27, 31, 33, 38, 40, 43, 45, 48,
53, 54, 56, 58, 60, 62, 63, 69, 75, 77, 79, 80

x55 781

1, 5, 7, 8, 10, 15, 16, 18, 20, 23, 25, 27, 32, 33, 36, 38, 40, 41, 43,
47, 49, 52, 53, 54, 56, 58, 63, 69, 71, 75, 77, 80

x69 781

1, 6, 7, 8, 10, 12, 16, 19, 21, 24, 25, 27, 31, 33, 36, 38, 40, 41, 43,
47, 49, 52, 53, 56, 58, 63, 67, 69, 71, 73, 77, 80

x60 781

1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 19, 21, 23, 25, 27, 36, 38, 40, 43,
45, 47, 49, 54, 56, 58, 60, 62, 69, 71, 73, 74, 80

x51 + 1 781

1, 2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 23, 25, 27, 36, 38, 40, 43, 45,
47, 52, 54, 56, 58, 60, 62, 69, 71, 73, 76, 79, 80

x45 781

1, 2, 5, 6, 7, 8, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 43, 45,
47, 49, 52, 54, 56, 58, 62, 65, 69, 71, 73, 76, 80

x43 + x58 781

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 23, 27, 33, 36, 38, 40, 43, 45,
47, 52, 54, 56, 58, 60, 62, 69, 71, 73, 74, 79, 80

x23 781

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 33, 38, 40, 43, 45, 47,
49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 75, 77, 79, 80

x8 + x35 + x64 781

1, 5, 7, 8, 10, 12, 14, 15, 16, 18, 20, 23, 24, 25, 27, 32, 33, 36, 40,
41, 43, 47, 49, 52, 53, 56, 58, 63, 69, 71, 75, 77, 80

x67 + 1 781

3, 5, 6, 8, 10, 12, 14, 16, 18, 19, 20, 23, 24, 25, 27, 31, 33, 38, 43,
45, 48, 53, 54, 56, 58, 60, 62, 63, 69, 75, 77, 79, 80

x2 781

6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 23, 25, 27, 29, 31, 33, 36,
38, 40, 41, 42, 45, 49, 54, 56, 60, 62, 63, 69, 73, 75, 80

x58 781

1, 2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 23, 27, 36, 38, 40, 43, 45, 47,
49, 52, 54, 56, 58, 60, 62, 69, 71, 73, 74, 76, 79, 80

x62 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 25, 30, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 53, 54, 56, 63, 69, 71, 73, 75, 80

x3+x25+x39+x40+x51+x66+x67+
x78 + 1 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 25, 27, 31, 33, 38, 40, 41, 43,
45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x10 + x13 + x14 + x19 + x25 + x28 +
x29 + x31 + x37 + x40 + x46 + x52 +
x53 + x55 + x56 + x57 + x60 + x61 +
x62 + x64 + x66 + x68 + x69 + 1

781

1, 3, 5, 7, 12, 14, 15, 16, 18, 19, 20, 21, 24, 25, 27, 31, 33, 36, 40,
41, 45, 49, 54, 56, 58, 60, 62, 63, 66, 71, 73, 75, 77, 80

x57 781

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 33, 36, 40, 41, 43, 45,
47, 49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 79, 80

x43 + x58 + x64 + x66 + x70 781

1, 3, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 25, 27, 36, 38, 40, 43,
45, 47, 49, 52, 54, 56, 58, 62, 65, 69, 71, 73, 76, 79, 80

x65 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 24, 25, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 63, 69, 71, 73, 75, 80

x23 + x39 + x50 + x66 + x67 + x79 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 25, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x9+x18+x24+x26+x32+x33+x34+
x42 + x51 + x53 + x54 + x58 + x59 +
x64 + x66 + x68 + x69 + x80 + 1

781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 24, 25, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 63, 69, 71, 73, 75, 80

x52 + x66 + x67 + x79 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 21, 25, 27, 31, 33, 38, 40, 41,
43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x13 + x14 + x19 + x25 + x27 + x28 +
x29 + x31 + x39 + x41 + x42 + x46 +
x51 + x52 + x54 + x55 + x56 + x57 +
x61 +x62 +x64 +x65 +x66 +x69 +x78

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 31, 32, 33, 36, 38,
40, 41, 45, 47, 48, 49, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x16 + x26 + x27 + x38 + x43 + x53 +
x54 + x56 + x65 + x67 + x80

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 32, 33, 36, 38,
40, 41, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x25 + x27 + x30 + x54 + x57 781

1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 19, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 52, 54, 56, 58, 60, 62, 65, 69, 70, 71, 73, 74, 76, 80

x42 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 21, 25, 27, 30, 31, 32, 33,
38, 40, 41, 43, 45, 47, 48, 49, 53, 54, 56, 63, 69, 71, 73, 75, 80

x14 + x29 + x41 + x55 + x61 + x62 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 24, 25, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 63, 69, 71, 73, 75, 80

x39 + x66 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 25, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x24 + x55 + x61 + x66 + x67 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x12+x27+x32+x33+x40+x42+x51+
x53 + x57 + x58 + x60 + x64 + x80 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x27 + x32 + x42 + x53 + x58 + x60 +
x64 + x78 + x80 + 1 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38,
40, 41, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x11 + x24 + x25 + x29 + x30 + x31 +
x40 + x41 + x45 + x50 + x52 + x53 +
x54 + x56 + x58 + x61 + x65 + x66 +
x67 + x68 + x77 + x79 + x80 + 1

781
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1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x14 + x16 + x27 + x29 + x30 + x31 +
x40 + x41 + x42 + x43 + x54 + x55 +
x56 + x57 + x58 + x64 + x79 + x80 + 1

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x28 + x29 + x32 + x33 + x40 + x41 +
x42 + x44 + x50 + x51 + x55 + x56 +
x57 + x59 + x61 + x62 + x64 + x66 +
x67 + x68 + x70 + x78 + 1

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 36, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x38 + x39 + x41 + x44 + x45 + x50 +
x51 + x52 + x53 + x55 + x57 + x58 +
x60 + x66 + x68 + x72 + x78 + x79 + 1

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 31, 33, 36, 38, 40, 41,
43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x43 + x50 + x52 + x55 + x58 + x66 +
x70 + x77 + 1 781

1, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x41 + x53 + x55 + x58 + x61 + x68 781

1, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x29 + x41 + x42 + x53 + x55 + x56 +
x58 +x61 +x64 +x66 +x67 +x68 +x69

781

1, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x14 + x55 + x58 + x61 + x64 + x66 +
x68 + x80

781

1, 5, 6, 10, 12, 14, 15, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 33,
36, 38, 40, 41, 42, 45, 48, 49, 54, 60, 62, 63, 69, 73, 75, 77, 80

x64 781

5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 31, 33,
36, 38, 40, 41, 42, 45, 48, 49, 54, 60, 62, 63, 69, 73, 75, 77, 80

x66 + 1 781

1, 2, 3, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 27, 33, 36, 38, 40,
43, 45, 47, 52, 54, 56, 58, 60, 62, 69, 70, 71, 73, 74, 76, 79, 80

x56 781

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 78, 79, 80

x21 + x36 + x48 + x58 + x63 + 1 781

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 78, 79, 80

x19+x27+x45+x54+x64+x66+x72+1 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 30, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x5 +x8 +x24 +x26 +x32 +x33 +x39 +
x40 + x41 + x42 + x44 + x47 + x51 +
x54 + x57 + x59 + x60 + x65 + x66 +
x68 + x69 + x78 + x79

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 25, 27, 31, 32, 33, 36, 38, 40,
41, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x25 + x52 + 1 782

1, 5, 6, 7, 8, 10, 12, 14, 15, 19, 21, 24, 25, 27, 31, 36, 38, 39, 40,
41, 45, 47, 49, 53, 56, 58, 62, 63, 66, 69, 71, 73, 77, 80

x40 782

1, 3, 5, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78

x25 + 1 782

1, 3, 5, 6, 10, 12, 14, 15, 16, 18, 19, 21, 25, 27, 31, 32, 33, 38, 40,
41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x13 + x16 + x19 + x25 + x29 + x33 +
x35 + x36 + x37 + x38 + x39 + x40 +
x42 + x45 + x51 + x52 + x53 + x54 +
x55 + x62 + x63 + x64 + x65 + x67 +
x69 + x70 + x71 + x73 + x79 + x80 + 1

782

5, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40, 45,
47, 48, 49, 53, 54, 56, 58, 60, 62, 63, 69, 71, 80

x38 + 1 783

3, 5, 6, 7, 8, 10, 14, 15, 16, 21, 23, 25, 27, 33, 34, 36, 38, 40, 45,
47, 48, 49, 53, 54, 55, 56, 58, 61, 62, 63, 69, 71, 74, 80

x27 + 1 783

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 21, 24, 25, 27, 30, 31, 32, 33,
38, 40, 41, 45, 47, 48, 49, 50, 53, 54, 56, 63, 69, 71, 73, 75, 80

x32 + x49 + x52 + x56 + x59 + x61 +
x62 + x79 + 1 783

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 21, 24, 25, 31, 33, 36, 38, 40,
41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x7+x16+x40+x43+x49+x52+x58+
x62 + x70 + x79 + 1 783

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 24, 25, 30, 31, 32, 33, 36,
38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x26 + x66 + x68 + 1 783

1, 3, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43, 45, 47,
49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 80

x4 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 55, 56, 58, 60, 62, 63, 67, 69, 71, 80

x53 + 1 784

1, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36,
38, 40, 41, 42, 45, 48, 49, 54, 60, 62, 63, 69, 73, 75, 80

x37 784

3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 60, 62, 63, 69, 71, 74, 80

x36 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36,
38, 40, 41, 45, 47, 49, 53, 58, 60, 63, 71, 75, 76, 80

x12 + 1 785

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 63, 65, 69, 71, 74, 75, 77, 78, 80

x34 785

1, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 52, 54, 56, 58, 60, 62, 69, 71, 73, 79, 80

x54 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 69, 71, 74, 75, 77, 78, 80

x13 + x55 + x60 + x64 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x22 + x49 + x64 786

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x14 + x23 + x41 + x47 + x49 + x50 +
x58 + x64

786

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x3 +x4 +x20 +x22 +x30 +x34 +x38 +
x40 + x42 + x45 + x49 + x51 + x58 +
x61 + x65 + x67 + x69 + x72 + x78

786

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 79

x9+x29+x30+x32+x42+x43+x49+
x51+x57+x58+x59+x60+x62+x64+
x66 +x67 +x68 +x69 +x70 +x72 +x76

791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x17+x26+x30+x32+x41+x43+x47+
x57+x62+x65+x66+x70+x72+x74+1 791
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1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x14 + x17 + x26 + x30 + x43 + x47 +
x50 + x57 + x58 + x59 + x65 + x70 +
x72 + x74 + x77 + 1

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 63, 65, 69, 71, 75, 77, 79

x12+x26+x30+x39+x41+x45+x47+
x57+x58+x59+x62+x64+x74+x76+1 791

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 62, 63, 65, 69, 71, 75, 77

x5+x18+x20+x26+x28+x29+x30+
x31 + x32 + x41 + x42 + x44 + x50 +
x51 + x56 + x57 + x62 + x64 + x67 +
x69 + x70 + x71 + x74 + x77 + x78 + 1

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77

x1+x28+x32+x47+x58+x59+x62+
x64 + x74

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 80

x10 + x11 + x12 + x13 + x15 + x17 +
x19 + x20 + x29 + x31 + x32 + x33 +
x37 + x39 + x40 + x41 + x42 + x44 +
x46 + x48 + x49 + x50 + x53 + x57 +
x60 +x67 +x70 +x71 +x76 +x78 +x79

791

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36,
38, 40, 41, 42, 45, 47, 49, 53, 58, 63, 69, 71, 72, 76, 79, 80

x61 791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 71, 74, 75, 77, 78, 80

x43 + x47 + x58 + x70 + x74 + 1 791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x12 + x17 + x26 + x27 + x29 + x30 +
x32 + x40 + x43 + x45 + x46 + x49 +
x53 + x54 + x56 + x59 + x62 + x64 +
x65 + x67 + x69 + x72 + x74 + x75

792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
41, 43, 45, 47, 49, 53, 56, 58, 61, 63, 69, 71, 75, 77, 78, 79, 80

x12+x14+x26+x30+x40+x41+x47+
x48+x56+x66+x67+x68+x74+x75+1 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
41, 43, 45, 47, 49, 53, 54, 56, 58, 63, 69, 71, 74, 75, 77, 78, 79, 80

x16 + x43 + x56 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 78, 79, 80

x14 + x16 + x26 + x29 + x30 + x41 +
x45 + x55 + x56 + x59 + x62 + x64 +
x66 + x68 + x70 + x71 + x72 + 1

792

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 69, 71, 75, 77, 80

x45 + x72 793

1, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 30, 31, 33, 38, 40, 43,
45, 47, 49, 51, 52, 56, 58, 63, 67, 69, 71, 73, 77, 80

x10 + x55 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 80

x36 + x52 + x60 + x63 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 80

x6+x11+x25+x33+x36+x53+x60+
x62 + x63 + x64 + x79

798

Trivium-784
maxterm bits superpoly round

1, 3, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43, 45, 47,
49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 80

x4 784

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 23, 25, 27, 29, 31, 33,
36, 38, 40, 41, 42, 45, 49, 54, 60, 62, 69, 73, 75, 80

x60 784

5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 67, 69, 71, 80

x56 + 1 784

1, 3, 5, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 78

x2 +x9 +x13 +x14 +x22 +x23 +x30 +
x36 + x38 + x39 + x40 + x42 + x47 +
x48 + x51 + x56 + x65 + x67 + x68 +
x69 + x74 + x75

784

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 25, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 63, 69, 71, 75, 80

x38 784

1, 3, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 61, 63, 69, 71, 75, 77, 78, 79

x38 + x47 + x74 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 55, 56, 58, 60, 62, 63, 67, 69, 71, 80

x53 + 1 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 67, 69, 71, 74, 80

x58 784

1, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36,
38, 40, 41, 42, 45, 48, 49, 54, 60, 62, 63, 69, 73, 75, 80

x37 784

1, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36,
38, 40, 41, 45, 48, 49, 54, 56, 60, 62, 69, 73, 75, 77, 80

x64 784

3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 60, 62, 63, 69, 71, 74, 80

x36 784

6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36,
38, 40, 41, 45, 48, 49, 54, 56, 60, 62, 63, 69, 73, 75, 77, 80

x66 784

5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40,
43, 45, 47, 49, 53, 54, 55, 56, 58, 60, 62, 63, 69, 71, 74, 80

x67 + 1 784

5, 6, 8, 10, 12, 14, 15, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 33,
36, 38, 40, 41, 42, 45, 49, 54, 60, 62, 63, 69, 73, 75, 77, 80

x62 784

1, 5, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40,
43, 45, 47, 48, 49, 53, 54, 56, 58, 60, 61, 62, 63, 69, 71, 74, 80

x69 + 1 784

3, 5, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 48, 49, 53, 54, 56, 58, 60, 61, 62, 63, 67, 69, 71, 74, 80

x40 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36,
38, 40, 41, 45, 47, 49, 53, 58, 60, 63, 71, 75, 76, 80

x12 + 1 785

1, 5, 6, 7, 10, 12, 16, 19, 21, 23, 24, 25, 27, 31, 33, 36, 38, 40, 41,
43, 47, 49, 52, 56, 58, 60, 63, 67, 69, 71, 73, 77, 80

x42 785
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1, 5, 6, 10, 12, 14, 15, 16, 19, 21, 25, 27, 30, 31, 33, 36, 38, 40, 41,
43, 45, 47, 48, 49, 53, 54, 56, 63, 69, 71, 73, 75, 80

x55 785

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 63, 65, 69, 71, 74, 75, 77, 78, 80

x34 785

1, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 52, 54, 56, 58, 60, 62, 69, 71, 73, 79, 80

x54 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 69, 71, 74, 75, 77, 78, 80

x13 + x55 + x60 + x64 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x22 + x49 + x64 786

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x3 +x4 +x7 +x12 +x20 +x22 +x30 +
x36+x39+x42+x43+x45+x47+x51+
x58 + x63 + x69 + x70 + x72 + x78 + 1

786

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x14 + x23 + x41 + x47 + x49 + x50 +
x58 + x64

786

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x3 +x4 +x14 +x22 +x30 +x34 +x38 +
x41 + x42 + x45 + x47 + x49 + x51 +
x58 + x61 + x65 + x69 + x72 + x78

786

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x3 +x4 +x20 +x22 +x30 +x34 +x38 +
x40 + x42 + x45 + x49 + x51 + x58 +
x61 + x65 + x67 + x69 + x72 + x78

786

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 79

x9+x29+x30+x32+x42+x43+x49+
x51+x57+x58+x59+x60+x62+x64+
x66 +x67 +x68 +x69 +x70 +x72 +x76

791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x17+x26+x30+x32+x41+x43+x47+
x57+x62+x65+x66+x70+x72+x74+1 791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x1+x17+x26+x28+x41+x43+x47+
x49 + x59 + x62 + x64 + x65 + x66 +
x70 + x72 + x74 + x76 + 1

791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x14 + x17 + x26 + x30 + x43 + x47 +
x50 + x57 + x58 + x59 + x65 + x70 +
x72 + x74 + x77 + 1

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 63, 65, 69, 71, 75, 77, 79

x12+x26+x30+x39+x41+x45+x47+
x57+x58+x59+x62+x64+x74+x76+1 791

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 62, 63, 65, 69, 71, 75, 77

x5+x18+x20+x26+x28+x29+x30+
x31 + x32 + x41 + x42 + x44 + x50 +
x51 + x56 + x57 + x62 + x64 + x67 +
x69 + x70 + x71 + x74 + x77 + x78 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 80

x7 +x9 +x10 +x11 +x12 +x13 +x15 +
x17 + x19 + x20 + x26 + x30 + x31 +
x33 + x37 + x39 + x40 + x41 + x42 +
x44+x45+x46+x47+x48+x50+x51+
x53+x56+x59+x60+x64+x67+x68+
x70 + x71 + x72 + x74 + x78 + x79 + 1

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77

x1+x28+x32+x47+x58+x59+x62+
x64 + x74

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 80

x3 + x4 + x6 + x7 + x9 + x10 + x13 +
x15+x19+x22+x28+x30+x33+x34+
x35+x38+x39+x40+x41+x43+x44+
x47+x48+x49+x50+x53+x54+x55+
x56+x58+x61+x62+x65+x66+x67+
x68 +x69 +x71 +x72 +x76 +x77 +x78

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 80

x10 + x11 + x12 + x13 + x15 + x17 +
x19 + x20 + x29 + x31 + x32 + x33 +
x37 + x39 + x40 + x41 + x42 + x44 +
x46 + x48 + x49 + x50 + x53 + x57 +
x60 +x67 +x70 +x71 +x76 +x78 +x79

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 80

x10+x11+x12+x13+x14+x15+x17+
x19+x20+x26+x29+x31+x33+x37+
x39+x40+x42+x44+x46+x48+x53+
x57+x58+x59+x60+x66+x67+x68+
x70 + x71 + x72 + x77 + x78 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 79

x3 +x4 +x6 +x11 +x15 +x17 +x19 +
x20 + x22 + x30 + x34 + x35 + x37 +
x38 + x43 + x47 + x51 + x54 + x57 +
x58 + x60 + x61 + x64 + x65 + x67 +
x68 + x70 + x72 + x74 + x77 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 79

x3 +x4 +x6 +x11 +x12 +x15 +x17 +
x18 + x19 + x20 + x22 + x30 + x34 +
x35+x37+x38+x39+x42+x43+x45+
x47+x50+x54+x56+x57+x58+x61+
x65 + x69 + x70 + x74 + x78 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 71, 74, 75, 77, 78, 80

x1 +x5 +x9 +x14 +x18 +x20 +x26 +
x28+x32+x41+x42+x43+x45+x47+
x49 +x66 +x67 +x69 +x70 +x76 +x78

791

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36,
38, 40, 41, 42, 45, 47, 49, 53, 58, 63, 69, 71, 72, 76, 79, 80

x61 791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 79

x3+x4+x6+x7+x9+x11+x17+x18+
x20+x22+x26+x28+x29+x31+x34+
x35+x37+x38+x39+x41+x46+x50+
x51+x54+x55+x56+x58+x61+x65+
x66 + x67 + x74 + x76 + x78 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 71, 74, 75, 77, 78, 80

x43 + x47 + x58 + x70 + x74 + 1 791
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1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x12 + x17 + x26 + x27 + x29 + x30 +
x32 + x40 + x43 + x45 + x46 + x49 +
x53 + x54 + x56 + x59 + x62 + x64 +
x65 + x67 + x69 + x72 + x74 + x75

792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
41, 43, 45, 47, 49, 53, 54, 56, 58, 63, 69, 71, 75, 77, 78, 79, 80

x12 + x26 + x39 + x56 + x68 + 1 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
41, 43, 45, 47, 49, 53, 56, 58, 61, 63, 69, 71, 75, 77, 78, 79, 80

x12+x14+x26+x30+x40+x41+x47+
x48+x56+x66+x67+x68+x74+x75+1 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
41, 43, 45, 47, 49, 53, 54, 56, 58, 63, 69, 71, 74, 75, 77, 78, 79, 80

x16 + x43 + x56 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 78, 79, 80

x14 + x16 + x26 + x29 + x30 + x41 +
x45 + x55 + x56 + x59 + x62 + x64 +
x66 + x68 + x70 + x71 + x72 + 1

792

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 69, 71, 75, 77, 80

x45 + x72 793

1, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 30, 31, 33, 38, 40, 43,
45, 47, 49, 51, 52, 56, 58, 63, 67, 69, 71, 73, 77, 80

x10 + x55 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 80

x36 + x52 + x60 + x63 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 80

x10 + x17 + x27 + x36 + x37 + x40 +
x52 + x59 + x60 + x63 + x66 + x67

798

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43, 45,
47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 79

x27 + x54 + x60 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 80

x6+x11+x25+x33+x36+x53+x60+
x62 + x63 + x64 + x79

798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 80

x6+x11+x25+x33+x36+x52+x53+
x60 + x62 + x63 + x64 + x79

798

5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 60, 61, 62, 63, 67, 69, 71, 74, 80

x65 + x66 + x67 + 1 798

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 54, 56, 58, 62, 69, 71, 73, 80

x25 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43,
45, 47, 49, 53, 56, 58, 63, 69, 71, 75, 77, 80

x12 + x38 + x39 + x40 799

Trivium-799
maxterm bits superpoly round

1, 6, 8, 10, 12, 14, 18, 20, 23, 25, 27, 31, 33, 36, 38, 40, 43, 45, 47,
49, 53, 54, 56, 58, 62, 63, 69, 73, 75, 77, 80

x60 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 54, 56, 58, 62, 69, 71, 73, 80

x25 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43,
45, 47, 49, 53, 56, 58, 63, 69, 71, 75, 77, 80

x25 + x40 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43,
45, 47, 49, 53, 56, 58, 63, 69, 71, 75, 77, 80

x12 + x38 + x39 + x40 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 18, 20, 23, 25, 27, 33, 36, 38, 40,
41, 43, 47, 49, 53, 56, 58, 63, 69, 71, 75, 77, 80

x67 + 1 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 31, 33, 36, 38,
40, 41, 45, 47, 49, 53, 56, 58, 63, 69, 71, 75, 80

x42 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 19, 21, 23, 25, 27, 31, 36, 38, 40, 41,
45, 47, 49, 53, 56, 58, 63, 69, 71, 73, 75, 77, 80

x53 799

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 23, 25, 27, 31, 33, 36,
38, 40, 41, 45, 49, 54, 56, 62, 69, 73, 75, 77, 80

x64 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 71, 80

x36 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 63, 65, 69, 71, 75, 77, 80

x38 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 54, 56, 58, 60, 62, 65, 69, 70, 71, 73, 80

x56 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 34, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 71, 74, 80

x69 + 1 799

1, 6, 7, 8, 10, 12, 14, 16, 19, 21, 25, 27, 30, 31, 33, 36, 38, 40, 41,
43, 45, 47, 49, 51, 52, 56, 58, 63, 67, 69, 71, 73, 77, 80

x66 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 25, 27, 33, 34, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 67, 69, 71, 74, 80

x58 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 55, 56, 58, 62, 63, 67, 69, 71, 74, 80

x37 799

Trivium-800
maxterm bits superpoly round

0, 5, 6, 7, 9, 11, 13, 17, 19, 20, 22, 24, 26, 30, 32, 33, 35, 37, 39,
42, 44, 46, 48, 52, 55, 57, 61, 62, 66, 68, 72, 74, 76, 79

x63 800
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