Complex Networks
Seeking critical nodes in digraphs
The Critical Node Detection Problem (CNDP) consists in finding the set of nodes, defined critical, whose removal maximally degrades the graph. In this work we focus on finding the set of critical nodes whose removal minimizes the pairwise connectivity of a direct graph (digraph). Such problem has been proved to be NP-hard, thus we need efficient heuristics to detect critical nodes in real-world applications. We aim at understanding which is the best heuristic we can apply to identify critical nodes in practice, i.e., taking into account time constrains and real-world networks. We present an in-depth analysis of several heuristics we ran on both real-world and on synthetic graphs. We define and evaluate two different strategies for each heuristic: standard and iterative. Our main findings show that an algorithm recently proposed to solve the CNDP and that can be used as heuristic for the general case provides the best results in real-world graphs, and it is also the fastest. However, there are few exceptions that are thoroughly analyzed and discussed. We show that among the heuristics we analyzed, few of them cannot be applied to very large graphs, when the iterative strategy is used, due to their time complexity. Finally, we suggest possible directions to further improve the heuristic providing the best results. (Paper)
The Hyperbolic Geometric Block Model and Networks with Latent and Explicit Geometries
In hyperbolic geometric networks the vertices are embedded in a latent metric space and the edge probability depends on the hyperbolic distance between the nodes. These models allows to produce networks with high clustering and scale-free degree distribution, where the coordinates of the vertices abstract their centrality and similarity. Based on the principles of hyperbolic models, in this paper we introduce the Hyperbolic Geometric Block Model, which yields highly clustered, scale-free networks while preserving the desired group mixing structure. We additionally study a parametric network model whose edge probability depends on both the distance in an explicit euclidean space and the distance in a latent geometric space. Through extensive simulations on a stylized city of 10K inhabitants, we provide experimental evidence of the robustness of the HGBM model and of the possibility to combine a latent and an explicit geometry to produce data-driven social networks that exhibit many of the main features observed in empirical networks. (Paper)
The Fitness-Corrected Block Model, or how to create maximum-entropy data-driven spatial social networks
Models of networks play a major role in explaining and reproducing empirically observed patterns. Suitable models can be used to randomize an observed network while preserving some of its features, or to generate synthetic graphs whose properties may be tuned upon the characteristics of a given population. In the present paper, we introduce the Fitness-Corrected Block Model, an adjustable-density variation of the well-known Degree-Corrected Block Model, and we show that the proposed construction yields a maximum entropy model. When the network is sparse, we derive an analytical expression for the degree distribution of the model that depends on just the constraints and the chosen fitness-distribution. Our model is perfectly suited to define maximum-entropy data-driven spatial social networks, where each block identifies vertices having similar position (e.g., residence) and age, and where the expected block-to-block adjacency matrix can be inferred from the available data. In this case, the sparse-regime approximation coincides with a phenomenological model where the probability of a link binding two individuals is directly proportional to their sociability and to the typical cohesion of their age-groups, whereas it decays as an inverse-power of their geographic distance. We support our analytical findings through simulations of a stylized urban area.(Paper)
Inferring Urban Social Networks from Publicly Available Data
The definition of suitable generative models for synthetic yet realistic social networks is a widely studied problem in the literature. By not being tied to any real data, random graph models cannot capture all the subtleties of real networks and are inadequate for many practical contexts—including areas of research, such as computational epidemiology, which are recently high on the agenda. At the same time, the so-called contact networks describe interactions, rather than relationships, and are strongly dependent on the application and on the size and quality of the sample data used to infer them. To fill the gap between these two approaches, we present a data-driven model for urban social networks, implemented and released as open source software. By using just widely available aggregated demographic and social-mixing data, we are able to create, for a territory of interest, an age-stratified and geo-referenced synthetic population whose individuals are connected by “strong ties” of two types: intra-household (e.g., kinship) or friendship. While household links are entirely data-driven, we propose a parametric probabilistic model for friendship, based on the assumption that distances and age differences play a role, and that not all individuals are equally sociable. The demographic and geographic factors governing the structure of the obtained network, under different configurations, are thoroughly studied through extensive simulations focused on three Italian cities of different size.(Paper, pdf)