The technology of the IANCIS platform

Alessandro Celestini Institute for Applied Computing (IAC-CNR) a.celestini@iac.cnr.it

Data Analysis Framework

Data Analysis Framework

Acquisition

- Broad crawling
- <u>Focused</u> crawling

Data Analysis Framework

Acquisition

- Broad crawling
- Focused crawling

Elaboration

- Data grabbing from web pages
- <u>Text extraction</u> from web resources
- Analysis of extracted texts

Platform Workflow

Extractor

Analyser

New crawler from scratch

For our evaluation we considered: **performance, configurability, extensibility and supportability**

We tested the performance of our **crawler prototype** and evaluated the time required to implement the missing features

We identified BUbiNG as the base for our crawler component. A customized version of BUbiNG is currently part of the crawling unit of our framework

It supports several data models: documents, graphs, and key-values

It supports ACID transactions if required

It provides a **SQL-like query language** or JavaScript extensions

DOCUMENTS

The storage unit is a document, in a relational database the storage unit is a record Documents in a collection may have a **different structure**

It supports several data models: documents, graphs, and key-values

It supports ACID transactions if required

It provides a **SQL-like query language** or JavaScript extensions

DOCUMENTS

The storage unit is a document, in a relational database the storage unit is a record Documents in a collection may have a **different structure**

For each web resource we store the following informations

TEXT LANGUAGE CRAWLING_DATE EXTRACTION_DATE

WARC_HEADER HTTP_HEADER TIKA_METADATA URL

ANALYSIS_DATE COGITO

Technologies

BUBING: high performance crawler, originally developed by the Laboratory for Web Algorithmics (LAW) of the University of Milan

Technologies

ACQUISITION

BUBING: high performance crawler, originally developed by the Laboratory for Web Algorithmics (LAW) of the University of Milan

TIKA: open-source software suite for the identification and extraction of text from more than 1500 different file types

ELABORATION Text Analysis

COGITO: semantical analysis engine by Expert System, which classifies a text according to a suitable taxonomy, providing both quantitative and qualitative information (*what topic* is the text about and *to what extent* the text discusses such topic)

Technologies

ACQUISITION

BUBING: high performance crawler, originally developed by the Laboratory for Web Algorithmics (LAW) of the University of Milan

TIKA: open-source software suite for the identification and extraction of text from more than 1500 different file types

ELABORATION Text Analysis

COGITO: semantical analysis engine by Expert System, which classifies a text according to a suitable taxonomy, providing both quantitative and qualitative information (*what topic* is the text about and *to what extent* the text discusses such topic)

 ArangoDB

ArangoDB: is a multi-model, open-source, NoSQL database with flexible data models for documents, graphs, and key-values

OBJECTIVE:

Crawling of a known subset of websites (e.g. blogs, forums, marketplaces, etc.), and possibly only of a specific portion of such websites

SCRAPY: an open source and collaborative application framework for crawling web sites, which can be used for a wide range of useful applications

Each web site has its own page layout, which can be used:

- to drive spiders
- to automatically grab data

Exploring and Analyzing the Tor Hidden Services Graph

OBJECTIVE:

Gather **information concerning the topology** of the Tor Web and identify potential relationships among **topological properties and hidden services' contents**

OBJECTIVE:

Gather **information concerning the topology** of the Tor Web and identify potential relationships among **topological properties and hidden services' contents**

We construct 3 graphs:

- Page Graph (PG)
- Host Graph (HG)
- Service Graph (SG)

Graph	# Nodes	# Arcs
Page Graph	918885	17963147
Host Graph	5420	64379
Service Graph	5144	59492

TOPOLOGY

We identify **the most important nodes** in the network, namely those with highest degrees and Betweenness Centrality*

Rank	Node Index					
	In-degree (PG)	Out-degree (PG)	Degree (PG*)	BC (PG)	BC (PG*)	
1	255	6855	255	142	154	
2	3399	496	496	452	461	
3	13499	8107	3399	653	4217	
4	341315	42224	13499	422	15324	
5	344053	218797	341315	12630	2860 8	
6	341666	103530	343628	3467	37137	
7	790729	131172	344053	1558	39453	
8	343628	130099	341666	348	40354	
9	342870	128671	790729	1913	42400	
10	411	128096	6855	1198	46429	

Table IV: Degree and Betweenness Centrality(Top 10)

Top nodes represents interesting **targets** for investigation

*BC measures the extent to which a vertex lies on paths between other vertices

TOPOLOGY

We identify **the most important nodes** in the network, namely those with highest degrees and Betweenness Centrality*

Rank	Node Index					
	In-degree (PG)	Out-degree (PG)	Degree (PG*)	BC (PG)	BC (PG*)	
1	255	6855	255	142	154	
2	3399	496	496	452	461	
3	13499	8107	3399	653	4217	
4	341315	42224	13499	422	15324	
5	344053	218797	341315	12630	28608	
6	341666	103530	343628	3467	37137	
7	790729	131172	344053	1558	39453	
8	343628	130099	341666	348	40354	
9	342870	128671	790729	1913	42400	
10	411	128096	6855	1198	46429	

Table IV: Degree and Betweenness Centrality(Top 10)

Top nodes represents interesting **targets for investigation**

HIDDEN SERVICES' CONTENTS

We use **Cogito's output to represent the content** of each visited page (a vector for each page)

We use the **cosine similarity** to measure the similarity between any two pages

*BC measures the extent to which a vertex lies on paths between other vertices

FINDING COMMUNITIES:

We can identify **components with increasing semantic similarity by cutting off graph nodes with increasing BC score** (or increasing degree)

It emerges that the **BC** is a better performing metrics than the degree to the end of identifying semantic uniform sub-components

FINDING COMMUNITIES:

We can identify **components with increasing semantic similarity by cutting off graph nodes with increasing BC score** (or increasing degree)

It emerges that the **BC** is a better performing metrics than the degree to the end of identifying semantic uniform sub-components

Thank you for your time