System Architecture Design and Implementation

1 The Toolkit

In this document we present the design and implementation of our toolkit, whose compo-
nents and workflow are summarized in Figure 1. It consists of a core application for massive
Web crawling, indexing and text mining, and of two external independent modules for cus-
tomized/focused crawling and structure mining respectively.

1.1 The Core Application

At the heart of the toolkit is a core application in charge of automatically exploring Tor websites
and collecting their contents, while indexing and clustering gathered data. Based on an analysis
of other applications oriented to the collection and analysis of data, we designed the core of
our toolkit around four main components, all written in Java: a coordinator, a crawler, an
extractor and an analyser.

In the following, we describe the toolkit’s core application more in detail: we start with an
overview of its components and workflow, that prompts us to report on implementation and
operational aspects; we then summarize configuration options, pointing out the most important
ones; finally, we focus on the crawler, discussing its design and functionalities.

Coordinator: Initializes, Extractor: Reads WARC archives,
starts and stops other units extracting and filtering text
Crawler: Visits Tor Analyser: Interacts with
websites and creates the semantic engine and
WARC archives | COORDINATOR | COoRE stores analysis results
APPLICATION
\ 4
2UIT | Crawier | ExTRACTOR | ANALYSER [¢—>{ SEMANTIC ENGINE
MobDuULE 4
L3
GRAPH BUILDERl) 4

Graph Builder:

DIRECTORY DBMS
ARCHIVE * n &
Reads WARC archive 1

and builds graphs EXTERNAL SCRAPY Scrapy Spiders: Collect web
MODULE SPIDERS resources and store them in a

file system directory

Figure 1: Components and workflow.

1.1.1 Components and Workflow

The main process of the core application, that we developed from scratch, is the coordinator,
responsible of organizing the operations of other units. When launching the tool, the coordi-
nator is activated and it starts reading the configuration file and setting up the application. It
checks the existence of the database and creates one if it does not exist. After initialization
procedures, the coordinator activates the crawler, the process which concretely performs the
task of visiting Tor websites.

The crawler carries out a breadth-first search of Tor websites and stores all retrieved re-
sources in a WARC archive. A list of known hidden services, the root set, is provided to the
crawler to determine the data collection starting points. When the archive reaches a threshold
size, the coordinator stops the crawler. The threshold size of the archive is a configuration
parameter, which can be modified in the configuration file. Once the crawler stops, the coordi-
nator moves the WARC archive and creates a new empty file, which will be used by the crawler
at its next activation, then the extractor starts.

The extractor is a multi-thread process that concurrently reads and extracts text from
resources contained in the WARC archive (and/or in a file system directory, see Section 1.1.2).
The extractor reads the WARC archive, extracts texts from collected data and stores them
in a database. To extract text from digital documents, the extractor uses the Apache Tika
API ', Apache Tika is a project of the Apache Software Foundation, providing a java toolkit
able to detect and extract metadata and text from over a thousand different file types. The
extractor only stores texts from web pages that replied successfully during the crawling (HTTP
status code “200 OK”), and it filters extracted texts according to specific configuration options
(e.g. on a language basis). All data are stored in a document-oriented database, in which
each web resource is stored as a document. For each web resource the extractor stores: (i)
the HTTP response header, (ii) the WARC record header, (iii) the metadata provided by
Tika, (iv) the extracted text, and (iv) the language of the document’s text. Specifically, we
use ArangoDB 2, a multi-model, open-source, NoSQL database with flexible data models for
documents, graphs, and key-values. It supports ACID transactions if required and provides a
SQL-like query language or JavaScript extensions. Once the extractor terminates its operations,
the coordinator activates the analyser.

The analyser is a multi-thread process that concurrently reads documents from the database
and sends their texts to the semantic engine, for analysis. For each document the analyser
prepares a RESTful request, containing its text and language, and sends the request to the
engine. The engine sends back analyses results, which are again stored by the analyser in the
initial database, together with other document’s information. Once all documents have been
analysed, the coordinator stops the analyser.

The analyser relies on Cogito, a multi-language semantic engine developed by Expert Sys-
tem, which can understand the meaning in context within unstructured text. Cogito is able
to find hidden relationships, trends and events, transforming unstructured data into structured
information. Through several analyses, it identifies three different types of entities (people,
places and companies/organizations), categorizes documents on the basis of several taxonomies
and it is able to extract entity co-occurrences.

Thttps:/ /tika.apache.org
https://www.arangodb.com

1.1.2 Configuration

The application behaviour can be set up by modifying a Java properties file, named “con-
fig.properties” . First of all, through the configuration file it is possible to determine what
operations the application will perform, by selecting any subset of the three building blocks,
i.e. crawling, extraction, and analysis. If the extractor is enabled, either or both of two sup-
ported modalities can be selected namely extraction from WARC and extraction from file. In
the first modality the extractor uses a WARC file, in the latter it uses a file system directory
to retrieve resources to elaborate.

A number of options can be specified through the configuration file, including: (i) the
number of threads used by the extractor and the analyser agents; (ii) the threshold size of
WARC archives generated by the crawler — when that size is reached, the archive is passed
to the extractor and a new archive is created by the crawler; (iii) the directory used by the
crawler to store data; (iv) the name of the database to be created or used to store documents;
(v) the name of the database’s collections used by the extractor and the analyser agents; (vi)
the directory used by the extractor to retrieve file — in case the extraction from file modality
has been activated. Moreover, it is possible to activate the file system data storage option,
i.e. data produced by crawler, extractor and analyser can be stored locally in the file system,
keeping in mind that a copy of the same data is stored in the database by default. Finally, the
configuration file contains the address and other parameters used to contact the RESTful web
service exposed by the semantic engine.

1.1.3 The Crawler

We evaluated different alternatives for the development of the crawler. In particular, we im-
plemented a crawler prototype from scratch and evaluated it against three main existing can-
didates: Apache Nutch ? [2], Heritrix 4 [3] and BUbING [1]. Considering several criteria, such
as performance, configurability, extensibility and supportability, we found BUbiNG to be the
most appropriate choice as the base for our crawler component. BUbiNG is a high-performance,
scalable, distributed, open-source crawler, written in Java, and developed by the Laboratory
for Web Algorithmics (LAW) at the Computer Science Department of the University of Milan.

Significant efforts were needed for the integration of BUbiNG within our toolkit, so as to
turn it into an application’s component under the control of the coordinator. Moreover, we
needed to enable BUbiNG operating in Tor instead of the surface Web. Whereas, by default,
BUDbING presents a set of threads that perform DNS requests, in our application we avoid
these requests and send them directly to a HTTP proxy. We chose to use privoxy °, after
testing other alternatives. In particular, we decided not to use polipo ¢, that is often used
in combination with Tor, because it is no longer maintained and currently seems not able to
manage correctly the format of some HTTP responses. However, any HT'TP proxy configured
to use Tor can be used. Through the crawler configuration file, that is a Java properties file
named ‘crawler.properties’, it is possible to specify which HTTP proxy the crawler must use.
Several other parameters can be set through that configuration file, including: (i) the number

3http://nutch.apache.org
4https://webarchive.jira.com /wiki/display /Heritrix
Shttps:/ /www.privoxy.org

Shttps://www.irif.fr/ jch/software/polipo/

of threads the crawler will use for its operations (parsing, dns resolution, fetching); (ii) which
resources are collected from websites (e.g. html pages, media file, digital documents); (iii)
network timeouts used when contacting websites; (iv) where collected date will be stored; (v)
how and whether to manage cookies; (vi) the delays between requests to the same website. For
a complete list of configuration parameters we refer the reader to BUbiNG’s documentation 7.
With our toolkit we provide a standard crawler configuration, tested for Tor network, thus
editing that file is not needed for standard usage.

For what concerns the crawling process, in BUbiNG a pool of software agents are responsible
for both exploring the Web and collecting (and partially elaborating) the data. Such agents
work in parallel, each handling in turn several threads, and by default implementing a breadth-
first-search. Due to Tor’s high volatility, the results of the crawling process are theoretically
susceptible to fluctuations based on the order in which links are followed. Yet, we did not
have any reason to prefer one order over another, and we therefore did not modify this setting.
Summing up, in our experiments BUbiNG was used as follows:

e A predetermined set of hidden services, the root set, is inserted in an url list.

e The first fetching thread available extracts the first onion url from the list and exports
the content of the corresponding hidden service in main memory.

e The first parsing thread available analyses that content aiming at extracting new onion
urls to visit.

e The new onion urls found are passed to a sieve able to verify whether those urls were
already visited before.

e If so, the urls are discarded, otherwise they are added in the tail of the url list.

e Fetching threads attempt to contact each url for a maximum of three times, after that
the url is considered not available.

1.2 External Modules

Alongside of the core application, our toolkit comprehends two external modules which can be
launched independently: a set of Scrapy Spiders, written in Python, and a Graph Builder, writ-
ten in C. The spiders enhance the crawling process by permitting focused crawling, supporting
semi-automated procedures, and offering anti-detection settings. The Graph Builder supports
the reconstruction of the graph associated to the crawling process, enabling topological studies
of the explored portion of the Web.

1.2.1 Scrapy Spiders

Besides BUbING, we developed and integrated in our toolkit a set of customized spiders which
can be managed as modules and used to boost the crawling process. Specifically, our spiders
were written relying on Scrapy 8, a Python framework for crawling websites and extracting data.

"http://law.di.unimi.it /software/bubing-docs/overview-summary.html
8https://scrapy.org

Using ad-hoc spiders besides the main crawler allows for focused crawling which supports a semi-
automated (i.e. human assisted) procedure needed to gain access to hidden contents requiring
a login procedure or a captcha solver. Moreover, through configuration settings, we are able
to choose a breadth-first or depth-first search strategy for the crawling procedure. A further
customization required for our spiders consists in avoiding crawling detection, which may be
implemented by our targets. To that purpose, we included configuration settings concerning the
robots exclusion protocol, network timeouts and (again) delays between requests to the same
website. Furthermore, we programmed our spiders to visit only specific sections of targeted
websites and to carry out only legal and not suspicious actions. Finally, the data collected by
Scrapy Spiders are stored as files in a directory and are integrated in the core application via the
extractor module. Indeed, through configuration settings, the extractor unit can be instructed
to retrieve files from system directories. The Scrapy Spiders module can be used as a template
to create other spiders with the same framework, or as an example of how to integrate data
collected by other crawlers.

1.2.2 Graph Builder

The Graph Builder is written in C and supports the reconstruction of the graphs associated
to the crawling process, using the WARC archive created by BUbiNG. To parse HTML file
and extract links we use the mythml library °. The Graph Builder module is a multi-thread
application, it takes as input the name of the WARC file to read and the number of threads to
use to build the graphs. For each WARC file three directed graphs are created by the module,
a page graph, a host graph and a service graph, which are represented as list of edges. In the
page graph an edge exists between page A and page B if there is a least a link from page A
to page B. In the host graph an edge exists between host A and host B if there is a least a
page of host A that links to a page of host B. The service graph is the higher level of grouping,
in which each node represents an hidden service, which is identified by a 16 character string
(base32 encoded). In this graph an edge exists between service A and service B if there is a
least a page of service A that links to a page of service B. Each graph is represented by two
files that are written as output by the module: a “.index” and a “.edges” file. The “.index” file
contains the id of each graph’s node with the corresponding url, while the “.edges” file contains
the list of graph’s edges represented as id pairs.

References

[1] P. Boldi, A. Marino, M. Santini, and S. Vigna. Bubing: Massive crawling for the masses. In
Proceedings of the Companion Publication of the 23rd International Conference on World
Wide Web Companion, pages 227-228, 2014.

[2] R. Khare, D. Cutting, K. Sitaker, and A. Rifkin. Nutch: A flexible and scalable open-source
web search engine. Oregon State University, 1:32-32, 2004.

[3] G. Mohr, M. Stack, I. Ranitovic, D. Avery, and M. Kimpton. An introduction to heritrix an
open source archival quality web crawler. In In IWAW0/, 4th International Web Archiving
Workshop. Citeseer, 2004.

9https://github.com /lexborisov/myhtml

