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The tool should:

Automatically explore Tor websites
Extract text from collected resources and analyze it

Visualize analysis results and identify evidence of illegal activities

The tool is meant to be the first step towards the development of an
investigation instrument for the Tor network

(*) IANCIS is funded by the EU Financial Programme "Prevention of and Fight against Crime" (ISEC) - DG Home Affairs
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Tor websites

Tor websites are accessible only through the Tor network and each website is identified by
its onion address

An onion address is a non-mnemonic I6-character string followed by the
domain .onion (e.g http://duskgytldkxiugcé.onion)

Tor websites, often called hidden services, let users publish web content without
revealing the location of the site
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Tor websites, often called hidden services, let users publish web content without
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Several Tor websites promote illegal activities such as:

Terrorism

lllicit trafficking in narcotic drugs
Child pornography

Trafficking in human beings

Silk Silk Road was an online marketplace,
Road mostly used for selling illegal goods.
anonymous marsessiace [N 201 3, the FBI shut down the website.
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Data Analysis Framework

ACQUISITION ELABORATION

VISUALIZATION
i vl gl ] i

Elaboration

Acquisition Data grabbing from web pages

Text extraction from web resources

Broad crawling
Semantic analysis of extracted texts

Focused crawling

Topic modeling of extracted texts

Word embedding of extracted texts
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BUBING: high performance crawler, originally developed by the Laboratory for Web Algorithmics
(LAW) of the University of Milan

SCRAPY: an open source and collaborative application framework for crawling web sites, which
can be used for a wide range of useful applications
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(LAW) of the University of Milan

SCRAPY: an open source and collaborative application framework for crawling web sites, which
can be used for a wide range of useful applications

ELABORATION Text Extraction / T| |(a

TIKA: open-source software suite for the identification and extraction of text from more than
1000 different file types

ELABORATION Text Analysis égﬁ, e,

COGITO: semantical analysis engine by Expert System, which classifies a text according to a
suitable taxonomy, providing both quantitative and qualitative information (what topic is the text
about and to what extent the text discusses such topic)

VISUALIZATION Rl’

R:a free software environment for statistical computing and graphics
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Unstructured Textual
Data
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Semantic Analysis:
Categorization

COGITO assigns to each document zero or more categories, representing the
topics contained in the document (the number of categories assigned to a document may vary
on the basis of the size of the document)
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Semantic Analysis:
Categorization

A score is associated to each category, representing the relevance of the
category in the document

<category name="Fraud" score="2430.0" taxonomy="Crime">

<category name="Cyber Security" score="20410.0" taxonomy="Cyber illegal'">



Semantic Analysis:
Categorization

A score is associated to each category, representing the relevance of the
category in the document

<category name="Fraud" score="2430.0" taxonomy="Crime">

<category name="Cyber Security" score="20410.0" taxonomy="Cyber illegal'">

A list of sentences is associated to each category, on the basis of their
relevance for each given category

<sentence start="8946" end="8976">
<text>private keys for your bitcoins.</text>

<sentence start="10763" end="10792">
<text>export due to attempted fraud.</text>



Semantic Analysis:
Categorization

OVERVIEW OF CATEGORIES DISTRIBUTION
IN THE DATASET

Minimun - number of categories per document

15.2

Mean - number of categories per

document

i 159

Median - number of categories per document Maximun - number of categories per document

[ 9 159

1 158 1 169

HTML REPORT REALIZED WITH R 7




Semantic Analysis:
Categorization

Each RECTANGLE represents a document
RECTANGLE’S COLOR represents category’s type

Less than 6 Months
More than 6 Months
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UK militzry

France Obama hails Syria air
launches Firat Congress slrikes

backing for
Netzanyzhu. gf;»'ng;zc ted
lranis a L
Islamic State | Military
Austraiia r2ids | crisis: Iraq air | pi'ots UK
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State plot 1o edvanca® lraq

Iraq cris's: Islamic
State accused of
ethnic cleansing

Australia raids
over “Islamic
State plot o
behead" Police

Syria crisis: Car
bombings "kill 25"
in Homs Two car

Cameron to
unveil plan to
lackle lslamist
extremism Prime

France launches
first air strikes cn
IS in Iraq French
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out ther first

Syria air slrikes
conducted by
UK military pilots
UK pilots
embedded with
coalition allies’
forces

Murder, grievous Armed Forces

Obama halls Congrass backing
for Syria plan President Obama
has said Congress's backing for
his

Iraq crisis; Islamic State
accused of ethnic cleansing
Amnesty International says It
has new

Islamic State crisis: Irag air
strikes "halt IS advance"
Iraqi ground forces, backed
by air

RECTANGLE’S SIZE represents category’s score

Australia raids over
“Islamic State plot to
behead" Police have
carried out anti-terror
raiis in

Netanyahu: Iran is a
bigger threat than
Islamic State Israeli
Prime Minister Benjamin
Netanyahu

COLOR INTENSITY represents document’s age
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Semantical Analysis:
Entities Extraction

COGITO extracts three different types of entities from documents:

e PEOPLE

* PLACES
 ORGANIZATIONS

EACH ENTITY is specified with the type of the entity (PEOPLE, PLACES, ORGANIZATIONS)
and a list of properties that add information about the entity

<entity type="PEOPLE">
<text>Tony Abbott</text>
<properties>
<property source="base" name="sex" value="M" />
<property source="base" name="name" value="Tony" />
<property source="base" name="surname" value="Abbott" />

</properties>

</entity> <entity type=“PLACES">
<text>Australia</text>
<properties>

<property source="base" name="georef" value="Oceania" />
<property source="base" name="lat" value="S25.0.0" />
<property source="base" name="long" value="E135.0.0" />
</properties>
</entity>



Semantical Analysis:
Entities Extraction
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Each WORD represents an entity
WORD’S COLOR represents entity’s type

WORD’S SIZE represents entity’s occurrences
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Topic Modeling

Topic Modeling:
A Topic consists of a set of words that frequently occur together

Documents are generated combining content from one or more topics
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Topic Modeling

Topic Modeling:
A Topic consists of a set of words that frequently occur together
Documents are generated combining content from one or more topics
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Given a set of documents, we can identify both their topics and the extent to which each
topic is addressed in each document



Topic Modeling

Topic Modeling VS Categorization

CATEGORIZATION:

The user defines the categories to identify in the documents

TOPIC MODELING:
The system automatically identifies the topics in the documents

The only required input (besides the set of documents) is
the number of expected topics
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Topic Modeling

&% nucleus
' Market

Which are the topics in our
dataset!

Which are the most recurrent!’

Our dataset is composed by the pages of
items for sale in Tor marketplaces

Specifically, we focus our analysis on illicit
drugs trade

Top Topics

Topic 50: usd, dash, jewelleri
Topic 26: weed, seed, strain

Topic 25: wallet, remain, stock

Topic 10: signout, gram, usd

Topic 28: heroin, gram, usd
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I I I
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Expected Topic Proportions
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Modeling

What is a topic about?

Cloud word for Heroin topic

heroin

Which words are specific for
a topic?

sssss

" usd

sighout

Heroin is a specific word for
topic 28 (not gram!)

Topic 28

Topic 10



Topic Modeling

Topic 28 - Heroin

W649kFkVrEzJPXn450Hpv4ujgFScsjAopExHJQDK.html

Most representative

aTthLjbRF6uBByDooyC6kctaDg8Bpu5ynyQ7Q2Xw.html

. Topic 28:
Most representatlve heroin, gram, usd, price, china, drug
WORDS for each topic |
Topic 10:

signout, gram, usd, price, vendor, stock
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Word Embedding

In word embedding, words are embedded into a vector space, i.e.
each word is represented by a vector

WHAT IS THE Word embedding is a state-of-the-art approach to
MEANING OF A numerically/geometrically represent the meaning of a word

GIVEN WORD?

How do we associate a vector to a word?

There are several options, but learning algorithms based on
neural networks seams to be the most promising one



Word Embedding

We can use words vectors to evaluate similarity among words
(there might be several different types of similarities between words)

“Which are the words most
similar to France?”’

France === ltaly - Japan - Germany
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“Which are the words most

similar to France?” France ===» Italy - Japan - Germany

Paris - France + Italy = Rome “What is the word that is similar
to Italy in the same sense as

Paris - France + Japan = Tokyo )
Paris is similar to France?!”

King - Man + Woman = Queen

We can reason on words meaning and answer questions by performing simple algebraic
operations with the vector representation of words



Word Embedding

We can use words vectors to evaluate similarity among words
(there might be several different types of similarities between words)

“Which are the words most

similar to France?” France ===» Italy - Japan - Germany

Paris - France + Italy = Rome “What is the word that is similar
to Italy in the same sense as

Paris - France + Japan = Tokyo )
Paris is similar to France?!”

King - Man + Woman = Queen

We can reason on words meaning and answer questions by performing simple algebraic
operations with the vector representation of words

Czech + currency = koruna
We can combine words

German + capital = Berlin 1

I  ———



Word Embedding

Words meaning is learned from the context (i.e. the dataset)

The same word, used in a different context, might have a different meaning

Close the door behind you when you leave.
Keep your phone close, in case he calls!

America 1s home to many species of bear.
The bridge must bear the weight of the cars and trucks.

A hunter's bow 1is often made of flexible wood.
The violinist takes good care of her bow.



Word Embedding

Words meaning is learned from the context (i.e. the dataset)

The same word, used in a different context, might have a different meaning

Close the door behind you when you leave.
Keep your phone close, in case he calls!

America 1s home to many species of bear.
The bridge must bear the weight of the cars and trucks.

A hunter's bow 1is often made of flexible wood.
The violinist takes good care of her bow.

Find “codewords”, e.g. in a marketplace cheese means cocaine
How CAN WE

USE WORD Disambiguate, e.g. detect pages in which green means marijuana
EMBEDDING!?

Entity recognition, e.g. find codename of a terrorist



Conclusions

We presented a general framework for data analysis composed of three
main unities: acquisition, elaboration and visualization.

We showed that each unit can be customized on the basis of objectives

We discussed different possible approaches for the elaboration of
unstructured textual data (semantic analysis, topic modeling and word
embedding)



Thank you for your time



