
Exploring and Analyzing the Tor Hidden Services
Graph

Massimo Bernaschi
Institute for Applied Computing (IAC-CNR),

Via dei Taurini 19, Rome, Italy
massimo.bernaschi@cnr.it

Alessandro Celestini
Institute for Applied Computing (IAC-CNR),

Via dei Taurini 19, Rome, Italy
a.celestini@iac.cnr.it

Stefano Guarino
Institute for Applied Computing (IAC-CNR),

Via dei Taurini 19, Rome, Italy
s.guarino@iac.cnr.it

Flavio Lombardi
Institute for Applied Computing (IAC-CNR),

Via dei Taurini 19, Rome, Italy
flavio.lombardi@cnr.it

Abstract

The exploration and analysis of Web graphs has flourished in the recent past, pro-
ducing a large number of relevant and interesting research results. However, the
unique characteristics of the Tor network limit the applicability of standard tech-
niques and demand for specific algorithms to explore and analyze it. The attention
of the research community has focused on assessing the security of the Tor infras-
tructure (i.e., its ability to actually provide the intended level of anonymity) and
on discussing what Tor is currently being used for. Since there are no foolproof
techniques for automatically discovering Tor hidden services, little or no informa-
tion is available about the topology of the Tor Web graph. Even less is known on
the relationship between content similarity and topological structure. The present
paper aims at addressing such lack of information. Among its contributions: a
study on automatic Tor Web exploration/data collection approaches; the adoption
of novel representative metrics for evaluating Tor data; a novel in-depth analysis
of the hidden services graph; a rich correlation analysis of hidden services’ seman-
tics and topology. Finally, a broad interesting set of novel insights/considerations
over the Tor Web organization and content are provided.

Keywords Web graphs, Network topology, Automatic Web exploration, Correlation analysis

1 Introduction

The Onion Router (Tor 1) network is an anonymous communication network leveraging an im-
plementation of the onion routing protocol [1]. Composed of a network of volunteer routers, Tor
allows its users to access the Internet anonymously, evading traditional network surveillance and
traffic analysis mechanisms. Tor can also provide anonymity to servers that offer various kinds of
services (e.g., websites) without revealing any network-level information about their locations. Such
servers, configured to receive inbound connections only through Tor, are called hidden services and
can only be accessed using a Tor-enabled browser. A hidden service is identified by its onion url
and it is not associated with any (visible) IP address. Tor is able to interpret such urls and forward
data packets to and from a hidden service, guaranteeing anonymity in both directions. Tor hidden
services are part of the dark Web, i.e., a subset of the deep Web.

1https://www.torproject.org/

In recent years, Tor attracted significant attention from both society and media, as well as from the
research community. The main reason of such interest is that a completely anonymous network
represents a perfect breading ground for illegal activities. Tor hidden services have been accused to
provide protection to terrorists 2, and are known to host marketplaces for drugs, weapons and pedo-
pornography [2]. Research work about Tor focused on two main goals: (i) assessing its actual level
of anonymity, searching for Tor flaws and weaknesses, designing effective attacks and proposing
possible countermeasures [3, 4, 5]; (ii) analysing and discussing the thematic organization of Tor
hidden services and how their contents relate to their popularity, in order to understand to which
extent Tor can be associated with illegality [6, 7].

Even though the analysis of the surface Web 3 graph has flourished in the past, producing a plethora
of relevant research results, we could not find any similar result/work for the Tor Web. As a con-
sequence, little or no information over the structure of the Tor hidden services graph is known.
Furthermore, to the best of our knowledge, the literature lacks any results that relate the topological
characteristics of the Tor Web to its security and to information extraction and content analysis of
such a relevant and potentially dangerous network.

The present paper aims at addressing such deficiency of the Tor literature by collecting, analysing
and discussing the hidden services graph using state-of-the-art techniques. Present work contributes
as follows, by providing: (i) a survey over the possible Tor Web exploration approaches and their
limitations; (ii) the adoption of a relevant subset of metrics for evaluating actual Tor hidden services
data; (iii) a novel in-depth investigation over the Tor Web topology; (iv) an in-depth analysis of the
relationship between the topics found in (English) Tor pages and the Tor Web topology.

The paper is organized as follows: Section 2 critically surveys related work, discussing both Tor and
the surface Web; Section 3 details the objectives for this work, and motivates the choice of metrics;
Section 4 presents the methodology we followed in our investigation; further, Section 5 discusses
the collected experimental data; finally, Section 6 draws final conclusions and gives hints for future
work.

2 Background and Related Work

The Tor network has been designed as a low-latency, anonymity-guaranteeing and censorship-
resistant network. For the last ten years, Tor has attracted significant attention from the research
community, interested both in assessing its security with respect to de-anonymization attacks, and in
understanding which threats a publicly available anonymous communication system could expose
society to. In the following, we provide an overview of what Tor is and how it works. Then, we
summarize the main findings of previous research work concerning both Tor and the structure of the
surface Web.

2.1 About Tor

The purpose of the Tor network is twofold: on the one hand, it makes it possible to access the Inter-
net anonymously, guaranteeing resilience against standard network surveillance and traffic analysis
techniques; on the other hand, it allows running anonymous and untraceable Web servers, called
hidden services, that can be accessed only using a specific Tor-enabled browser. Tor anonymity is
based on an implementation of the onion routing protocol [1], requiring each data packet to undergo
multiple layers of encryption at the application layer of the communication protocol stack. Such
layers are stripped off, one by one, along the route that connects the source to the destination, so
that each router along the path is only aware of the previous and following step in the path. Tor
routers are often referred to as relays and are managed by volunteers over the Internet. Each relay is
identified by a long-term public signing key, and the list of all available relays is stored by special
nodes of the network called directory authorities, endowed with their own directory signing key.
The security of Tor therefore relies on cryptography at three different levels: (i) encryption for data
privacy within Tor, (ii) authentication between clients and relays, and (iii) integrity/authenticity of
the list of relays.

2http://www.bloomberg.com/news/articles/2014-10-15/how-anti-is-spies-fight-terrorism-with-digital-tools
3A term for the traditional WWW that is visible to everybody.

2

Tor Web usually indicates the network made of all Tor hidden services and their mutual hyperlinks,
not to be confused with the network of Tor relays. The mechanism by which a client connects to
a hidden service can be briefly described as follows. Each hidden service is identified by its onion
url, a 80-bit excerpt of the SHA-1 hash digest of its public key. First, a hidden service advertises its
existence by communicating its public key to a set of randomly picked relays, called introduction
points. Next, the hidden service publishes a signed descriptor, containing its public key and its
set of introduction points. This descriptor is stored in a distributed hash table, formed by special
relays called HSDirs. To contact a hidden service, its onion url is used by the client to download the
descriptor and thus learn the hidden service’s introduction points and public key. Communication
between client and hidden service takes place through secure circuits (relying on the aforementioned
onion routing protocol) to a commonly known relay, known as rendezvous point. The rendezvous
point is chosen by the client and communicated to the hidden service via one of the introduction
points. As observed in [8], Tor effectiveness strongly depends on the choice of the relays and on
their reliability and trustability, with special regard to the first and last relays in a Tor circuit (entry
guard and exit node), which, being close to the source and to the destination, have access to the most
sensitive information. However, directory authorities, in charge of distributing an always up-to-date
list of valid and trusted relays, are actually responsible for the entire Tor network. Therefore, Tor
uses a fixed set of 9 trusted directory authorities 4, whose list is hardcoded into each Tor client.

Searching through the Tor Web is not possible using standard approaches, since Tor hidden services
are not indexed by traditional search engines like Google or Bing. Specific Tor search engines exist,
accessible either through the surface Web (e.g., Ahmia 5, Onion.link 6), or through Tor only (e.g.,
DuckDuckGo 7 TORCH 8), but they are not likewise reliable, mostly because Tor is very volatile
and not as connected as the surface Web. Even the size of the Tor Web can be hardly estimated,
despite a few crawling attempts cited in the following.

2.2 On Tor Flaws

Most research work about Tor aims at either inding flaws and weaknesses of its anonymization
scheme [8], or designing attacks [4],[5] and proposing effective counteractions [9],[3]. Perry et al.
introduce TorFlow [8], a suite of tools for measuring the reliability, capacity and integrity of Tor
routers. TorFlow aimed at making such measurements available to the Tor directory authorities,
responsible for providing to Tor clients the list of available relays. In [10], the authors observe that
a malicious router operator can counterfeit its information to attract tunnels for compromise. To
address similar attacks, they propose an opportunistic bandwidth measurement algorithm to replace
selfreported values, and a mechanism to let Tor users trade-off better performance against stronger
anonymity. In [3], the authors present StegoTorus, a tool that comprehensively disguises Tor from
protocol analysis. To foil analysis of packet contents, Tor traffic is steganographed to resemble an in-
nocuous cover protocol, such as HTTP. To foil analysis at transport level, the Tor circuit is distributed
over many shorter-lived connections with per-packet characteristics that mimic cover-protocol traf-
fic. Byrukov [4] shows that it is possible to attack arbitrary hidden services by carefully analysing
the HSDir selection process. By running a malicious HSDir, he effectively implemented an attack
that allows to measure the popularity of a hidden service, take it down, and even deanonymize it.
Arp and al [5], describe a deanonymization attack against Tor called TorBen. Such an attack is based
on two notable weaknesses: Web pages can be easily manipulated to load content from untrusted
origins, and, despite encryption, low-latency anonymization networks cannot effectively hide the
size of request-response pairs. TorBen is a side channel attack, allowing short Web page markers to
be transmitted to expose the Web page a user visits over Tor. In an empirical evaluation with 60,000
Web pages, TorBen was able to detect these markers with an accuracy of over 91% and no false
positives.

4This number refers to the date this paper was submitted.
5https://ahmia.fi
6https://onion.link
7http://3g2upl4pq6kufc4m.onion
8http://xmh57jrzrnw6insl.onion

3

2.3 On Tor Usage

The other main research direction over Tor infrastructure consists in studying if and how Tor is being
(mis)used, and whether the accuses of providing protection and anonymity to criminals are well
deserved or not. McCoy et al. [11] show an analysis obtained by taking part to the Tor network, with
the primary goals of gaining a better understanding of how Tor was being used and by whom. They
show that Web traffic makes up the majority of the connections and bandwidth, but non-interactive
protocols consume a disproportionately large amount of bandwidth when compared to interactive
protocols. Further, they develop a method for detecting exit router logging, and present evidence
that Tor is used throughout the world, but router participation is limited to only a few countries.
Spitters et al. [7] focus more on the contents of Tor hidden services. They apply classification and
topic model-based text mining techniques to the contents of over a thousand Tor hidden services
in order to model their thematic organization and linguistic diversity. Their results indicate that
most hidden services exhibit illegal or controversial contents in their data set. Along the same
line, Biryukov et al. [6] give an overview of Tor hidden services, studying 39824 hidden service
descriptors collected in 2013, and analyzing and classifying their contents. At the time of the crawl,
they were able to connect to 7114 destinations, but half of them were excluded because inappropriate
for classification, ending up with 3050 destinations. Their results show that resources devoted to
criminal activities (drugs, adult content, counterfeits, weapons, etc.) constitute 44%, whereas the
remaining 56% are devoted to a number of different topics: “Politics” (9%) and “Anonymity” (8%)
are among the most popular. Biryukov et al. also estimate the popularity of hidden services by
looking at the request rates for hidden service descriptors by clients. They find that, while the content
of Tor hidden services is rather varied, the most popular hidden services are related to botnets.
While Biryukov et al. make use of topic modeling to analyse the content of the pages they examine,
Owen and Savage [12] analysed hidden services’ contents resorting to manual classification. In
our present paper we adopt a different approach leveraging the reliable and well-known Cogito 9

semantic engine tool. This choice is motivated by the need to efficiently and effectively relate
content and topological information. In addition, the reliability of the Cogito tool had been already
proved during the IANCIS project 10. A recent study carried out by Soska and Christin [13] on Tor
marketplaces shows interesting evolutionary properties of the anonymous marketplace ecosystem.
The authors perform a specific Tor Web crawling, collecting data from 16 different marketplaces
over more than two years, without focusing on a specific category of products. The results of their
study suggest that marketplaces are quite resilient to law enforcement take-downs and large-scale
frauds. They also evidence that the majority of the products being sold belong to drugs category.

2.4 On Web Exploration and Topology

To the best of our knowledge, no research work has ever discussed the properties of the Tor Web
graph, obtained associating a vertex to each hidden service or page, and an edge to each hyper-
link between them. Some interesting initial work exists, such as Jansen’s [14] aimed at building
a simplified model of the Tor network. Jansen’s toy Tor network model is used to perform simple
small-scale simulations by leveraging existing Tor experimentation tools, namely Shadow [15], and
ExperimenTor [16].

Over the last 20 years similar studies of the common surface Web graph allowed, among other
things, to optimize search algorithms [17],[18] and Web data extraction [19], to find efficient com-
pressed representations [20],[21],[22], to propose new suitable random graph models [23],[24], and
to improve contents analysis [25]. In [26], the authors describe two algorithms for improved Web
search and automatic community discovery, respectively. They report a number of measurements
obtained while running such algorithms, that provide the first publicly known portrait of the Web
graph. Along the same line, the authors of [27] report on experiments on local and global prop-
erties of the Web graph using two Altavista crawls each one with over 200 million pages and 1.5
billion links. The interest raised by such seminal papers suggested further rigorous studies on Web
metrics, surveyed in [28]. New techniques introduced later allow to model graph structures, and to
extract relevant measurements and information about the topology of the corresponding graph. Par-
ticular attention is dedicated to graph clustering, community detection, and community evaluation
measures, well surveyed in [29]: communities often emerge spontaneously as sets of highly related

9http://www.expertsystem.com/cogito
10http://www.iancis.eu

4

http://www.expertsystem.com/cogito
http://www.iancis.eu

pages with similar contents [25]. The other main topic is query processing: Google’s search engine
is based on a well-known Web graph metrics called PageRank [30], and query processing based on
PageRank and similar metrics rely on ranking algorithms explicitly designed to be implemented over
suitable representations of Web graphs, as discussed in [18]. Efficient representation of Web graphs
is fundamental, due to the ever increasing size of the Web. In several papers [20],[21],[22], authors
focus on this problem, agreeing that the ability to compress and easily navigate Web graphs depends
on the topology of the graph, and on precise metrics able to capture its inner redundancy and to de-
scribe the existing correlation among adjacency lists of different vertices. Many researchers discuss
the possibility of generating synthetic graphs, having the same properties of real-world Web graphs.
Such models allow running simulations and test algorithms. The authors of [26], in fact, underline
that traditional random graph models (e.g., the well-known Erdős-Rényi model [31]) do not exhibit
many properties emerged from their study of the Web graph. To provide better tools for further anal-
ysis of graph algorithms on the Web, they propose a new family of synthetic graph models based
on an edge copying process. In [23], the authors speculate that the limits of traditional models are
mainly caused by two design choices: the usage of a static set of vertices, and the independence of
the edges. Therefore, they propose a new model where edges are statistically dependent and new
vertices are added as time evolves, and they verify that graphs generated according to this model
present many similarities with Web graphs. Many more models where introduced in the following
years, and are mostly surveyed in [24].

In summary, it is clear that Tor represents a very interesting research topic, and that an accurate
analysis of structural and topological properties of Web graphs is instrumental in reaching a clear
understanding of their functioning, and of the behavior of exploration and data collection algorithms.
Yet, no similar study has ever been performed on the Tor Web graph. The purpose of this paper is
exactly to make a first step in order to fill this gap.

3 Analyzing the Tor graph

In this Section, we discuss how to properly characterize the Tor Web graph. In Section 3.1 we
identify the main goals of our analysis. Such goals motivate the choice of suitable metrics, presented
in Section 3.2. Finally, in Section 3.3 we briefly discuss how to formally describe the contents (i.e.,
text semantic) of a Web page.

3.1 Goals

The purpose of our analysis is to gather information concerning the topology of the Tor Web. In
addition, we aim at identifying potential relationships among topological properties and hidden ser-
vices’ contents. Since little or no information is available about the topology of the Tor Web graph,
it is reasonable to start by measuring a set of general features of the graph. It is worth noticing that
exploring the entire Tor Web is not feasible/practical for a number of reasons (it can be unstructured,
not linked by any other page, or volatile/temporary; furthermore, relaying timeouts often occur) as
shown by past attempts [11, 6]. Consequently, we will look at the portion of the Tor Web that is
accessible from the surface Web, as in most other previous related studies [13]. We will particularly
focus on measurements that allow us to verify the following hypotheses:

H1 We expect the Tor Web to be very topic-oriented, with most hidden services focusing on a
specific topic, and only a few hubs, mostly marketplaces, forums, wikis, or link directories,
that can be related to several different topics.

H2 Most hidden services are managed by single entities that offer services related to a specific
topic. Hence we expect to find many pages with only a few hyperlinks, if any, to other
pages controlled by the same entities.

H3 The hubs, that advertise and link to a large number of other pages, are much more likely to be
known and accessible from the surface Web. This means that we expect to find most hubs
among the root set used to seed our crawler (see Section 4.2).

H4 Considering all previous assumptions, we expect the topology of the Tor Web graph to be very
similar to a “forest” of directed extended stars, where each weakly connected component
is likely to coincide with the spanning tree obtained by a breadth first search started from,
and rooted into, one of the seeds.

5

H5 The pages where most dangerous illegal activities are discussed or promoted are probably the
hardest to access for the average user and for crawlers, due to the obvious attempt to conceal
them.

3.2 Metrics

Let us briefly recall the definition of some useful metrics (see also [32]) that will be used later in the
paper to characterize the topology of the Tor Web graph.

Degree distribution: the degree distribution is the statistical distribution of the number of edges per
vertex (vertex degree). In undirected graphs, we define the fraction pk of nodes of a graph of degree
k, for all k ≥ 0. When dealing with directed graphs, we need to define two different quantities pink
and poutk for the in-degree degin and out-degree degout, respectively. While these two quantities can
be separately studied, the study of their joint distribution usually provides more information about
the structure of a network. In that case, we define pkin,kout

as the fraction of vertices of in-degree
kin and out-degree kout, for all pairs (kin, kout). The degree distribution is one of the most studied
characteristics of a graph [26, 27, 33, 34], as it provides a clear insight into its structure.

Centrality: the centrality of a vertex measures its importance in the graph, based on the rationale
that the relevance of a node depends on how much the structure of the graph changes when we
remove that vertex. Several centrality metrics have been proposed in the literature, such as the well-
known eigenvector centrality [35], Katz centrality and Google’s PageRank [30], to cite a few. We
will focus on the most used median centrality metrics, the betweenness centrality BC [36], defined
as the fraction of shortest paths between any two vertices of the graph that pass through the vertex
considered. A vertex has high betweenness centrality if it takes on great importance in the transfer
of information or objects in the network.

Connected components: the connected components of an undirected graph are defined as the equiv-
alence classes induced by the adjacency relation. For directed graphs, there exist two different no-
tions of connected components: weakly connected components (WCCs) are the equivalence classes
induced by the relation “u is adjacent to v or vice versa”, whereas strongly connected components
(SCCs) are induced by the relation “u is adjacent to v and vice versa”. When dealing with the struc-
ture of a graph, it is fundamental to find its number of components and their size, and to detect the
presence of giant and/or small components. In our case, it is also important to compare the decom-
position obtained by identifying connected components with that induced by content similarity.

3.3 Semantic Analysis

To implement a large scale semantic analysis, we had to rely on an automated semantic engine. A
semantic engine can be fed with unformatted text, and can extract the meaning of that text, returning
(partially) structured data that summarizes its content. Current semantic engines are not only capable
of executing simple tasks such as detecting a document’s language or recognizing mentions to known
entities (e.g., famous people, organizations, places), but they can also map documents to a set of
predetermined categories, find related documents, or even extract complex knowledge assertions
(e.g., the fact that a company is buying another one for a specific amount).

In the present paper, we are mainly interested in two types of semantic analyses. On the one hand,
we want to analyse the content of a few specific pages that play a relevant role in the Tor Web graph,
such as those having highest in-degree, highest out-degree, or highest betweenness centrality score.
Actually, that task can be easily performed manually, as it is limited to a small number of pages.
On the other hand, we want to assess the relation between contents and connectivity, e.g., verifying
whether tightly connected graph regions correspond to set of pages concerning similar topics. In
this case, a semantic analysis tool is required, because we need to analyse thousands of pages and
extract structured and comparable/measurable information about their contents. To that purpose, we
selected the Cogito semantic engine developed by Expert System, a company specialized in semantic
technologies 11. We chose Cogito, because it provides several out-of-the-box semantic intelligence
features, such as categorization, text mining, fact mining, and entities extraction.

11http://www.expertsystem.com

6

Cogito receives as input an unformatted text, and returns a structured document (XML or JSON) that
contains the result of the semantic analysis of the input 12. However, within the scope of the present
paper we are only interested in Cogito’s ability to suggest meaningful tags from a user defined
taxonomy, or, more precisely, to assert the relevance of each category of the taxonomy with respect
to the text under analysis. Therefore, we developed an application that “filters” Cogito’s output,
dropping any information not related to categorization. The result of our analysis is represented by
a semantic vector S of size n, where n is the number of categories of the taxonomy, and S[i] is the
relative score of category i.

The taxonomy we use has been defined within the scope of the “IANCIS” ISEC Project 13, and
it is based on previous works [7, 6] that discuss the thematic organization of Tor hidden services.
The authors of [7] apply classification and topic modelling-based text mining techniques to the
contents of over a thousand hidden services. To summarize their findings, they provide a taxonomy
graph. The graph shows that most relevant topics are related to illicit or possibly illicit activities
(mostly drugs, (child) pornography, cyber crimes, counterfeit, terrorism, weapons, racism), with
only a few exceptions (business, technology, media, politics). Along the same line, the authors
of [6] analyze and classify the contents of 3050 hidden services. Their results show that resources
devoted to criminal activities (again, mostly drugs, adult content, counterfeits, weapons) constitute
44%, whereas the remaining 56% are devoted to a number of different topics, with politics (9%) and
anonymity (8%) being the most popular. For our classification, we selected 17 categories, as a trade-
off among the above findings, the objectives of the “IANCIS” Project, and the domain ontologies
developed by our partner Expert System that develops and sells the semantic engine Cogito. The
rationale was to cover a wide range of topics, from media and IT services to common felonies and
terrorism, with a focus on criminal activities that have been frequently associated to dark networks.
The selected topics are the following:

• Cyber attack

• Cyber deception

• Cyber security

• Fraud

• Gambling

• Illicit drugs

• Illicit trafficking in
weapons, munitions, and
explosives

• Information systems

• IT services companies

• Media companies

• Murder, grievous bodily
injury

• Racism and xenophobia

• Rape

• Sexual exploitation
of children and child
pornography

• Social networks

• Terrorism

• Weaponry

In the literature, alternative approaches, mostly based on topic modeling, have been successfully
implemented for the analysis and classification of Tor hidden services [7]. However, we believe it
is an advantage to use a well-established product whose performance can be considerably refined
thanks to the careful work of a group of linguists, that allows to specify in advance a list of categories
of interest for us (partly based on previous findings [7, 6]). It is important to take into account that
the ontologies developed by Expert System for the “IANCIS” Project, and herein used, only consider
English. As a consequence, we filtered out all non English text found before feeding it to Cogito.
Considering other languages is a viable direction for future activities.

We highlight that the semantic vectors can be easily used to assess the similarity of two pages. Intu-
itively, two pages p1 and p2 are semantically equivalent if their vectors Sp1 and Sp2 coincide. More
generally, a natural way to compare the content of two pages is to consider the cosine similarity 14

of their vectors, that is, the cosine of the angle between the two vectors. For instance, assume that
our taxonomy consists of only two categories, “food” and “drugs”. If the text contained in page
p1 can be associated with food but not with drugs (i.e., page p1 somehow talks about food but not
about drugs), the semantic vector of page p1 will be Sp1 = (1, 0). Now, if the same holds for
page p2, we have cosine(Sp1 , Sp2) = cosine((1, 0), (1, 0)) = cos(0) = 1, which means that the
two pages are semantically equivalent. If p2 talks about food as much as it talks about drugs, we

12See http://www.intelligenceapi.com/demo/ for a demo of Cogito’s functioning.
13DG Home Affairs ISEC Programme 2013 - Project IANCIS “Indexing of Anonimous Networks for Crime

Information Search”, 2014-2016, GA n. HOME/2013/ISEC/AG/INT/4000005222 - www.iancis.eu
14https://en.wikipedia.org/wiki/Cosine similarity

7

Table 1: Number of nodes and arcs of the page (PG), host (HG), and service (SG) graphs.
Graph # Nodes # Arcs
Directed Page Graph (PG) 918885 20446513
Undirected Page Graph (PG*) 918885 17963147
Directed Host Graph (HG) 5420 65716
Undirected Host Graph (HG*) 5420 64379
Directed Service Graph (SG) 5144 60688
Undirected Service Graph (SG*) 5144 59492

have Sp2 = (
√
2
2 ,
√
2
2), so that cosine(Sp1 , Sp2) = cosine((1, 0), (

√
2
2 ,
√
2
2)) = cos(π4) =

√
2
2 . Fi-

nally, if p2 talks about drugs and not about food, we have Sp2 = (0, 1), so that cosine(Sp1 , Sp2) =
cosine((1, 0), (0, 1)) = cos(π2) = 0, which means that there is no similarity at all between the
content of the two pages. Since we are considering only vectors with non negative components,
the angle between two vectors cannot be larger than π

2 , hence the cosine similarity is a perfect
normalized metrics of similarity. In Section 5.2 we will discuss more in details how to analyse the
semantic of several pages so as to infer general information about the graph and the relation between
topological and semantic aspects.

4 Dataset and Tor Graphs

To collect all data needed for our analysis we made use of the BUbiNG crawler [37] and leveraged
the Polipo 15 HTTP proxy. We chose BUbiNG as it is a high-performance, scalable, distributed and
open-source crawler 16.

We extracted the Tor graph from the data we gathered in the crawling phase. We analysed only
onion links, we did not add to the graph nodes in the surface Web or arcs from/to the surface Web,
possibly linked by onion pages. We built three different graphs: a Page Graph (PG), a Host Graph
(HG), and a Service Graph (SG). In the Page Graph each node represents a page and each arc
represents the existence of one or more hypertextual links between pages. In the Host Graph each
node represents the set of pages belonging to a single host, i.e., any Tor domain or subdomain, and
each arc represents the existence of one or more hypertextual links between hosts, i.e., the existence
of one or more hypertextual links among pages belonging to different hosts. Finally, in the Service
Graph, each node represents the set of pages belonging to a hidden service, i.e., a Tor domain
identified by a sequence of 16 characters (base32 encoded). Each arc represents the existence of one
or more hypertextual links among hidden services, i.e., the existence of one or more hypertextual
links among pages belonging to different hidden services. As better described later in Section 5,
for all three graphs we built both a directed version, denoted PG, HG, and SG, respectively, and a
undirected version, denoted PG*, HG*, and SG*, respectively. Table 1 shows the size of each graph
in terms of number of nodes and arcs.

4.1 The Crawling Process

In BUbiNG, a pool of software agents are responsible for both exploring the Web and collecting (and
partially elaborating) the data. Such agents work in parallel, each handling in turn several threads.
According to its default configuration, BUbiNG implements a breadth-first-search, and we did not
modify this aspect. However, to gain an insight about the depth of our crawling, we measured the
diameter of the undirected version of each graph and the eccentricity of vertices from the root set,
see Table 2 and Table 3. In our experiments, BUbiNG was mainly used as follows:

• A predetermined set of hidden services, the root set, is inserted in an url list.
• The first fetching thread available extracts the first onion url from the list and exports the

content of the corresponding hidden service in main memory.
• The first parsing thread available analyses that content aiming at extracting new onion urls

to visit.
15http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/
16Developed by the Laboratory for Web Algorithmics (LAW) at the Computer Science Department of the

Università degli studi di Milano

8

http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/

Table 2: Diameter of the undirected page (PG*), host (HG*), and service (SG*) graphs
Graph Diameter
Undirected Page Graph (PG*) 95
Undirected Host Graph (HG*) 4
Undirected Service Graph (SG*) 4

Table 3: Eccentricity of selected vertices from the root set, for the undirected page (PG*), host
(HG*), and service (SG*) graphs

Node Eccen. (PG*) Eccen. (HG*) Eccen. (SG*)
1 66 3 3
2 66 3 3
3 66 3 3
4 66 3 3
5 66 3 3
6 66 3 3
7 66 3 3
8 65 3 3
9 66 3 3
10 66 3 3
11 65 3 3
12 66 3 3

• The new onion urls found are passed to a sieve able to verify whether such urls were already
visited before.

• If so, the urls are discarded, otherwise they are added in the tail of the url list.

• Fetching threads attempt to contact each url for a maximum of three times, after that the
url is considered not available.

The url list is continuously updated with the new urls identified, and it is always kept ordered in
the same order in which the urls are found. In other words, the list is handled with a simple first-
in-first-out approach. We used also several filters to crawl only useful resources, e.g., only onion
addresses are followed by the crawler and media files (images, videos, etc.) are not downloaded.
Including the outer border of the Tor Web, i.e., pages of the surface Web that link to or are linked by
Tor pages could be interesting, but falls beyond the scope of the present work and will be considered
as a possible subject of future work.

If the Web graph is strongly connected, the composition of the root set does not affect the final
outcome of the crawl, though it may affect its speed. However, without any legitimate assumption
on the topology of the Tor Web graph, our analysis is potentially influenced by the choice of the root
set, as we discuss in the next Section.

We ran the crawler for about six weeks, and given the high latency of Tor network, we set the
connection and socket timeout to 360 seconds. At the end of the process our dataset contained
1119048 records, thus the crawler tried to connect to 1119048 urls. Only 824324 urls replied with
a success HTTP status code (200), whereas 94561 urls replied with a 3xx status code 17, 96816 urls
with a 4xx status code and 103347 urls with a 5xx status code.

4.2 On the Root Set Choice

One of the main goals of the present work is to provide the first characterization of the Tor Web
graph, so we are faced with the problem of how to guarantee a fully representative exploration of
the Tor Web, i.e., how to visit all, or at least a large enough set of, active hidden services. The
crawler finds a hidden service if and only if that hidden service can be reached, only following
hyperlinks, from one of the elements of the root set. Since many hidden services could deliberately
try to conceal themselves by limiting the number of ingoing hyperlink, we argue that a complete

17A status code 3xx is not actually an error code, since these codes are related to Web redirection.

9

crawl of the Tor Web is only possible supporting the crawler with some sort of brute force searcher,
that continuously feeds the url list of the crawler with new hidden services found by trying to access
random onion urls.

To verify the feasibility of a similar approach, we developed a test application that continuously
checks random hidden services’ urls. As a matter of fact, random, but plausible urls can be easily
generated, as onion urls are de facto 80-bit hash digests (in their readable form, 16 5-bit characters).
Our application hence uses m independent threads working in parallel as follows:

• Each thread computes a hash-chain, starting from a given seed.

• For each hash digest h generated, the thread translates the 80 bits of h into a 16 5-bit
characters word word(h) and tests the reachability of the hidden service word(h).onion.

• The thread periodically writes information about the status of the search on a file named
serviceURL info.csv. The information written are: the number of hash computed since
application launch, the number of hash computed since last valid hidden service found, the
number of valid hidden services found, and the date.

The result of our test was quite unsatisfactory: our application ran for 1 month, trying to reach ap-
proximately 1 million (220) different onion urls, and finding 0 active hidden services. Actually, with
a similar number of trials, it is perfectly possible to find no active hidden service. The Tor Project
estimates that about 30000 hidden services announce themselves to the Tor network every day 18,
so the chance to find an active hidden service by randomly selecting an onion url is approximately
2−65. What was surprising is that the application was able to check only 220 urls in a whole month.
The reason is that the latency of the Tor network is indeed much higher than expected, and the con-
nection timeout results the bottleneck of any similar brute-force attempt. Our test hence led us to
the conclusion that a brute-force search of active hidden services is unfeasible.

Hence, in our analysis we fed BUbiNG only with a (large) set of hidden services found “by hand” in
the surface Web, mostly wikis and link directories, like “The Hidden Wiki” page. With “by hand”
we mean that we merged together several lists of hidden services obtained using both standard
(e.g., Google) and Tor-specific (e.g., Ahmia) search engines. In particular, our root set contains
the complete list of hidden services indexed by Ahmia at the time our crawling activity started.
Despite its simplicity, we have at least two good reasons to assert that our approach is effective. On
the one hand, the quality of our root set is supported by the numbers of our crawl: the amount of
hidden services we were able to analyse is comparable to those used in previous similar attempts
in the literature [7, 6]. On the other hand, the way our root set was composed guarantees several
advantages in terms of what portion of the Tor Web we explored. First, we focus on the portion
of the Tor Web that is accessible to “common” users 19. While such a portion can be expected to
exhibit interesting topological characteristics, the least connected, most isolated and (probably) most
volatile hidden services are not very interesting from this point of view, and their presence in the
sample set risks to water down our analysis. Further, only using a root set of onion urls available on
the surface Web allows us to measure the size of the “public” part of the Tor Web and compare it
with the estimated total size. Even if limited to a sector of the Tor Web, our results pave the way for
a characterization of the Tor Web graph. The possibility to analyse and compare other approaches
to extend the root set is the first direction we identify for future work in the area.

5 Experiments, Analysis, and Discussion

Hereafter, we present and discuss the findings emerged from the analysis we carried out over the set
of hidden services collected by our crawl. More precisely, we consider three graphs that describe
the Tor Web at three different layers:

Page Graph (PG) This is the graph built on the relations among the visited Web pages. This graph
describes Tor at the lowest level, associating a vertex to each Tor page and an edge to each
hyperlink.

18https://blog.torproject.org/blog/some-statistics-about-onions
19Our notion of a common user includes even advanced users that know how to run a crawler, but not users

who are given the url of a hidden service by the owner of that service.

10

syndiccjacy*****.onion

mad-max.syndiccjacy*****.onion

mad-max.syndiccjacy*****.onion/sig up

mad-max.syndiccjacy*****.onion/goods/i/59fa8ac2d11b35bf3ac05e775b1dcc5e

blackmambamarket.syndiccjacy*****.onion

blackmambamarket.syndiccjacy*****.onion/login

SG

HG

PG

Figure 1: An example of graph construction

Host Graph (HG) This is the graph composed of the relationships among Tor hosts. In this graph,
vertices correspond to domains and subdomains of the Tor Web, with an edge between host
A and host B if there is at least one hyperlink between a page of A and a page of B.

Service Graph (SG) This is the graph summarizing/clustering the above information on a per-
service basis. This graph is the highest level representation of the Tor Web, in which
vertices correspond to Tor hidden services, and an edge connects service A to service B if
there is at least one hyperlink between a page of A and a page of B.

To further clarify the differences among these three graphs, let us consider the following example,
depicted in Fig. 1. We found that the hidden service

S syndiccjacy*****.onion

accommodates two different subdomains:

H1 mad-max.syndiccjacy*****.onion;
H2 blackmambamarket.syndiccjacy*****.onion.

In turn, mad-max.syndiccjacy*****.onion hosts two pages:

P1,1 mad-max.syndiccjacy*****.onion/sig up;
P1,2 mad-max.syndiccjacy*****.onion/goods/i/59fa8ac2d11b35bf3ac05e775b1dcc5e;

whereas blackmambamarket.syndiccjacy*****.onion hosts a single page:

P2 blackmambamarket.syndiccjacy*****.onion/login.

To represent these resources, we therefore use a single node in the SG (corresponding to service S),
two nodes in the HG (corresponding to hosts H1 and H2), and three nodes in the PG (corresponding
to pages P1,1, P1,2, and P2).

For all three graphs, we need to tell apart their directed and undirected version. The directed graphs
will be denoted PG, SG, and HG, respectively, and the direction of each edge is induced by the
corresponding hyperlink. The respective undirected graphs will be denoted PG*, SG*, and HG*.
We first focus on the topology of the aforementioned graphs. With the help of plots and tables, we
analyse the connectivity of those graphs, the degree distributions of both the directed and undirected
version, and the centrality of their vertices. Then, we focus on the semantic analysis of the content
extracted from all visited pages. Even though previous work already applied classification and topic-
modelling text mining techniques to discuss the content of Tor pages [7, 6], our analysis provides
novel insights thanks to the use of a well-established semantic engine that relies on a taxonomy
specifically defined for Tor. Finally, our main contribution consists in the first ever attempt to relate
topological and semantic properties of the Tor Web. Among other findings, this comparison allows
us to assess the nature of the most relevant (in terms of degree and centrality) pages of the network,
and to evaluate whether central nodes of the graph connect semantically uniform components, i.e.,
whether set of pages with similar content can be identified by cutting off suitably selected vertices
and edges. Overall, the analysis exhibited in this Section provides an interesting snapshot of the Tor
Web graph, and broadly confirms our intuitions presented in Section 3.

11

5.1 Topology of the Tor Web Graph

In the following, we focus on the three metrics, defined in Section 3.2, representing the most impor-
tant characteristics of the structure of the Tor Web graph.

5.1.1 Degree Distribution

We start presenting two plots that show a comparison of the in-degree distribution (Fig. 2a) and of
the out-degree distribution (Fig. 2b) for the PG, HG, and SG.

From Fig. 2a, we observe that almost 40% of the PG have in-degree 1. If we add those having
in-degree 2 or 3 we arrive to ∼ 60%, and if we sum up all nodes having in-degree at most 10 we
reach ∼ 80% of the graph. This confirms the intuition, underlying our hypotheses H2, H4, and
H5, that most Tor pages are “hard to find”, meaning that they are linked by only a few other pages.
For what concerns the SG and the HG, first of all we observe that the two probability distributions
are almost identical. In comparison with the PG, the in-degree distribution of hosts/services is less
concentrated, mostly because having in-degree 0 or 1 is far less likely for a host/service. Despite
significantly more hosts/services than pages have in-degree in [10, 20], the average in-degree of a
page results more than twice as large (∼ 25 vs. ∼ 12). This is quite reasonable, since a single
hyperlink to any of the pages of a host/service is enough to induce an edge in the HG/SG, but
multiple hyperlinks among pages of the same pair of hosts/services merge into a single edge in the
HG/SG. We underline that, for the sake of clarity, Fig. 2a only shows the most relevant part of the
plots. There are a few special cases of pages, services and hosts with much larger in-degree. More
specifically, the largest in-degree page has in-degree 18358, whereas the largest in-degree host and
service have in-degree 303 and 181, respectively.

0 10 20 30 40 50
10−4

10−3

10−2

10−1

100

in-degree

fr
ac
ti
on

of
n
o
d
es

PG
HG
SG

(a) Comparison of the in-degree distribution
for the Page Graph (PG), Host Graph (HG),
and Service Graph (SG).

0 10 20 30 40 50
10−4

10−3

10−2

10−1

100

out-degree

fr
ac
ti
on

of
n
o
d
es

PG
HG
SG

(b) Comparison of the out-degree distribution
for the Page Graph (PG), Host Graph (HG),
and Service Graph (SG).

Figure 2: In-degree and out-degree distributions for the directed graphs.

For what concerns the out-degree, from Fig. 2b we see that the HG and the SG are once again
almost identical. What leaps out is that the great majority of the nodes (∼ 72% for the HG, ∼ 75%
for the SG) have out-degree 0, i.e., no outgoing hyperlinks. In both cases, adding up nodes with
out-degree 1 we reach ∼ 90% of the whole graph. Significantly, hosts/services with out-degree 2 or
3 are one order of magnitude rarer than those with out-degree 1. This confirms our hypothesis H2,
namely, that most hidden services of the Tor Web graph offer specific services and have very low,
if any, interest in providing links to any other service, including related ones. Interestingly, about
thirty hosts present hyperlinks to a few hundred other hosts, whereas 10 hosts have more than 3000
outgoing edges, thus covering more than half of the whole graph, with one reaching out-degree as
large as 4751. Focusing on the PG, we observe an analogous qualitative behaviour, with nodes of
out-degree 0 and 1 weighing significantly more than all others. However, in the case of Tor pages
the difference is less pronounced, and a non-negligible portion of the PG links to a few tens of other
pages. There are more than 500 pages with hundreds of hyperlinks, about a hundred pages with
out-degree > 1000, but only 4 pages with out-degree > 5000, having out-degree 9156, 9669, and
10253 (two different pages), respectively. Overall, the out-degree distribution of these three graphs

12

shows the importance that specific link directories have in the topology of the Tor Web graph (as
stressed later in Section 5.1.2) other than the importance of the root set on the result of the crawl,
supporting our hypotheses H1, H2, and H4.

Notwithstanding the precious insight provided by Figs. 2a and 2b, the joint in-out-degree distribution
provides even more information about the structure of the graph. Once again, the joint distribution
of the SG and the HG, depicted in Fig. 3b and in Fig. 3c, respectively, are very similar. We observe
that almost half of the hosts have out-degree 0 and in-degree ≤ 10: such combinations together
account for ∼ 45% of the whole graph. The joint in-out-degree distribution of the PG, depicted
in Fig. 3a, is instead concentrated along the axis with in-degree 1, with combinations of in-degree
1 and out-degree ≤ 10 accounting for ∼ 25% of the whole graph, and the single combinations
(1, 0) and (1, 1) weighing more than 9% and 7%, respectively. Once again, the experiments seem to
support our hypothesis H4, namely, that the topology of the Tor Web resembles a “forest” of directed
extended stars, where a few hosts (the centres of the stars) link to a very large number of other hosts
with very small in-degree and no outgoing edges.

0 2 4 6 8 10

0

2

4

6

8

10

in-degree

o
u
t-
d
eg
re
e

0%

2%

4%

6%

8%

10%

(a) Joint in-out-degree distribution for the Page
Graph (PG).

0 2 4 6 8 10

0

2

4

6

8

10

in-degree

o
u
t-
d
eg
re
e

0%

2%

4%

6%

8%

10%

(b) Joint in-out-degree distribution for the Host
Graph (HG).

0 2 4 6 8 10

0

2

4

6

8

10

in-degree

o
u
t-
d
eg
re
e

0%

2%

4%

6%

8%

10%

(c) Joint in-out-degree distribution for the Ser-
vice Graph (SG).

Figure 3: Joint in-out-degree distribution for the directed graphs. Values on the color-bars
refer to fractions of nodes of the graph.

The analysis of the in-degree and out-degree distribution of the PG, HG, and SG provides many
interesting sparks for gaining a better understanding of their structure. One of the main insights
gained so far is that the Tor network can be rightfully expected to be very disconnected if represented
as a directed graph, as we will show later in Section 5.1.3. This is not surprising if we consider the
volatility of the Tor network, and that even the surface Web has been shown to present similar
properties [26]. In Figures 4a and 4b we therefore depict the degree distribution of the undirected
graphs PG*, HG*, and SG*, up to degree 5000 (Fig. 4a) and up to degree 100 (Fig. 4b), respectively.
From the figures, we observe that the undirected graphs are significantly more connected than their
directed counterpart.

13

0 1,000 2,000 3,000 4,000 5,000

10−6

10−5

10−4

10−3

10−2

10−1

degree

fr
a
ct
io
n
o
f
n
o
d
es

PG*

HG*

SG*

(a) Comparison of the degree distribution for
the undirected Page Graph (PG*), Host Graph
(HG*), and Service Graph (SG*) - Degrees ≤
5000.

0 20 40 60 80 100
10−4

10−3

10−2

10−1

degree

fr
a
ct
io
n
o
f
n
o
d
es

PG*

HG*

SG*

(b) Comparison of the degree distribution for
the undirected Page Graph (PG*), Host Graph
(HG*), and Service Graph (SG*) - Degrees ≤
100.

Figure 4: Degree distribution for the undirected graphs.

5.1.2 Betweenness Centrality

Studying the degree distribution of a graph does not only give a first glimpse about the connectivity
of the network, but it is also a way to assess the importance of single nodes. However, as discussed
in 3.2, there are more specific metrics able to capture the centrality of a node. Among them, the
Betweenness Centrality (BC) is the most widely known and used. Roughly speaking, the BC score
of a node quantifies the importance of that node in the overall connectivity of the graph and in the
way information flow through it. For the computation of the BC we resorted to a multi-GPU imple-
mentation [38, 39]. In the following, we present some plots that allow us to compare and discuss the
BC of the nodes of the three graphs. We will especially point our attention to the undirected versions
PG*, SG*, and HG* of the three graphs since the BC depends on the number of paths in the graph:
the dominance of nodes with very low in-degree and out-degree severely limits the number of paths,
making the analysis of the BC and other similar topological metrics of modest interest for the PG,
HG, and SG.

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1

10−6

10−5

10−4

10−3

10−2

10−1

normalized BC

fr
ac
ti
on

of
n
o
d
es

PG
HG
SG

(a) Comparison of the normalized betweenness
centrality distribution for the directed Page
Graph (PG), Host Graph (HG), and Service
Graph (SG).

0 5 · 10−2 0.1 0.15 0.2

10−6

10−5

10−4

10−3

10−2

10−1

normalized BC

fr
ac
ti
on

of
n
o
d
es

PG*

HG*

SG*

(b) Comparison of the normalized betweenness
centrality distribution for the undirected Page
Graph (PG*), Host Graph (HG*), and Service
Graph (SG*)

Figure 5: Normalized betweenness centrality distribution for all graphs.

In Figures 5a and 5b we present a comparison of the normalized BC for the three graphs, for the
directed and undirected cases, respectively. The overall trend depicted in the two figures is the same:
there are a few very central nodes surrounded by a vast majority of peripheral nodes.

14

Since the degree distribution and the betweenness centrality distribution can be directly compared,
it is natural to check whether nodes having the highest BC score have also the largest degree. To
this end, in Table 4 we report the top 10 nodes in the ranking of the page graph for what concerns
both degree and centrality, and for both the directed and undirected versions PG and PG*. What
emerges is that nodes with the highest BC score do not have the largest degree. Since the BC
of a node is proportional to the amount of shortest paths passing through that node, the intuition
here is that most central nodes are those nodes that connect otherwise disconnected regions, and
those nodes do not necessarily have a very large degree. Somewhat more surprisingly, the rankings
vary significantly from the directed to the undirected version of the graph, underlying once more
the significant difference between the topology of these two graphs. It is worth noticing that most
top-ranked nodes in terms of out-degree in Table 4 belonged to our root set, thus supporting our
hypothesis H3.

Table 4: Degree and Betweenness Centrality Top 10

Rank Node Index
In-degree (PG) Out-degree (PG) Degree (PG*) BC (PG) BC (PG*)

1 255 6855 255 142 154
2 3399 496 496 452 461
3 13499 8107 3399 653 4217
4 341315 42224 13499 422 15324
5 344053 218797 341315 12630 28608
6 341666 103530 343628 3467 37137
7 790729 131172 344053 1558 39453
8 343628 130099 341666 348 40354
9 342870 128671 790729 1913 42400

10 411 128096 6855 1198 46429

5.1.3 Connected Components

To complete the topological analysis of the Tor network, we focused on the number and size of con-
nected components of the three graphs under study. As we explained in Section 3.2, if we consider
the directed version of such graphs, we need to distinguish between strong and weak connection,
whereas in undirected graphs the notion of connectivity is unambiguous. However, as we already
mentioned in Section 5.1.2, the structure of the PG, SG, and HG is scarcely relevant. This is espe-
cially true when it comes to consider connected components: for instance, in the SG we found 4422
Strongly Connected Components (SCCs) for a graph of 5144 total nodes, with almost all SCCs
consisting of a single service. Besides, even seminal papers [26, 27] that analysed the connected
components of the surface Web focused on the undirected graph because of the very low connec-
tivity of the directed one. However, if we focus on the undirected graphs PG*, HG*, and SG*,
we observe a completely opposite phenomenon: all three graphs exhibit a single giant connected
component that comprehends all nodes of the network 20 , i.e., of size 918885, 5420, and 5144,
respectively.

To gain additional information about the structure of the graph, we decided to verify how the con-
nectivity of the network depends on its most important nodes, identified in Section 5.1.2. To this
end, we incrementally removed from the PG* the nodes with larger BC and larger degree, together
with all their edges, and studied the number and size of connected components of the remaining
graph. The first cuts took into account the BC and degree rankings, cutting off at points where
those rankings exhibit a significant drop, as shown in Fig. 6a and in Fig. 6b. Table 5 summarizes
our findings, showing that the number of connected components increases quickly, but the size of
the largest component decreases pretty slowly. Let us underline that the column SRCC reports the
number of Semantically Relevant Connected Components, that is, the number of components that

20More precisely, we found a few micro-components of 1 or 2 nodes. We realized that such components were
artefacts of the procedure used to reconstruct the graph. Indeed, the only explanation of the effective existence
of such components would have been the presence of their nodes in the root set. We checked such possibility
and we didn’t find any evidence. Therefore, we considered such isolated pages as some sort of noise introduced
by our implementation. As such, we focused on the portion of the graph generated by our crawler that seemed
ascribable to a descriptive pattern of the network.

15

40 60 80 100

10−2.8

10−2.6

10−2.4

49 59

72 92

node rank

b
et
w
en

n
es
s
ce
n
tr
al
it
y

PG*
Steps

(a) Normalized betweenness centrality for the
undirected Page Graph (PG*) - zoom on topo-
logical cuts.

20 40 60 80 100

103.7

103.8

103.9

104

13 29

43 82

node rank

d
eg
re
e

PG*
Steps

(b) Degree for the undirected Page Graph
(PG*) - zoom on topological cuts.

Figure 6: Topological cuts for the undirected Page Graph (PG*).

include at least 2 pages (i.e., at least 1 possible comparison) to which it is possible to associate a
semantic vector 21.

Table 5: Connected Components after Cuts (PG*)

Cut (BC) # CC # SRCC Max Size Cut (Degree) # CC # SRCC Max Size
49 462 32 876348 13 13433 5 903680
59 4792 34 872008 29 14464 6 902323
72 4874 41 860346 43 16055 9 895265
92 9672 73 851268 82 16902 10 894294

500 41966 444 685351 500 43023 53 847006
1000 58646 861 550912 1000 48287 66 835470
5000 137732 1395 322329 5000 86071 343 727876

10000 171310 1553 261276 10000 115122 536 652547
50000 307000 1785 70993 50000 265580 3696 261239

100000 390179 2137 12127 100000 396926 5866 103085

Figure 7, showing two excerpts of the SG*, represents a visual support to our findings. We selected
two subgraphs, respectively induced by the following two sets of vertices:

Set A The vertex v with maximal BC, 8 random neighbors v1, . . . , v8 of v, min(4,deg(vi)) random
neighbors vi,j of each vi, and min(5,deg(vi,j)) random neighbors of each vi,j – this graph
is depicted in Fig. 7a and Fig. 7b using two different graph layouts;

Set B The two vertices v, v′ having largest BC, 8 random neighbors v1, . . . , v8 of v and 8
random neighbors v′1, . . . , v

′
8 of v′, min(4,deg(vi)) random neighbors of each vi and

min(4,deg(v′i)) random neighbors of each v′i – this graph is depicted in Fig. 7c and Fig. 7d
using two different graph layouts.

In the first subgraph we highlighted the minimum spanning tree (of depth 3) rooted in v, whereas in
the second one we highlighted two minimum spanning trees (of depth 2) rooted in v and v′, respec-
tively. Although Fig. 7 is obtained from the undirected service graph SG*, whereas our hypothesis
H4 referred to the directed version of the Tor Web graph, the comparison between the whole sub-
graphs and their minimum spanning trees suggests that the structure of the Tor Web graph is not far
from our prediction.

21Many Tor pages do not include any text or are not in English, preventing Cogito from producing a semantic
vector.

16

(a) The subgraph of SG* induced by Set A –
layout: graphopt

(b) The subgraph of SG* induced by Set A –
layout: tilford circular

(c) The subgraph of SG* induced by Set B –
layout: graphopt

(d) The subgraph of SG* induced by Set B –
layout: tilford circular

Figure 7: Excerpts of the SG*, using the graphopt and the tilford circular visualization layouts
(graphs in the same box are different visualizations of the very same graph). Nodes’ colors get
lighter as distance from the root node(s) with largest BC increases.

5.2 Semantic Analysis of the Tor Web Graph

In this Section, we discuss the semantic organization of the Tor Web graph, and correlate it with our
findings about its topology. To that purpose, we first need to identify a suitable way to: (i) analyse
the content of a single page, (ii) compare the contents of two pages, and (iii) assess the semantic
uniformity of a set of pages. More in detail:

(i) As outlined in Section 3.3, with the aid of the Cogito semantic engine, for each page p,
we obtain a vector Sp of size n, whose ith component Sp[i] quantifies to which extent the
content of the page can be associated to the ith category of our taxonomy. The taxonomy,
defined within the scope of the “IANCIS” ISEC Project 22, is reported and discussed in
Section 3.3. Let us recall that we consider only English text, as already motivated in Sec-

22DG Home Affairs ISEC Programme 2013 - Project IANCIS “Indexing of Anonimous Networks for Crime
Information Search”, 2014-2016, GA n. HOME/2013/ISEC/AG/INT/4000005222 - www.iancis.eu

17

tion 3.3. Additionally, we ignore all pages with a null semantic vector, i.e., whose content
is irrelevant with respect to any category of our taxonomy.

(ii) To compare the contents of two pages, we compute the cosine similarity of the two cor-
responding vectors, cosine(Sp1 , Sp2), defined as the cosine of the angle between the two
vectors. If cosine(Sp1 , Sp2) = 0 the two vectors are orthogonal and the two pages have
nothing in common. Conversely, if cosine(Sp1 , Sp2) = 1 the two vectors coincide, i.e., the
two pages can be considered fully equivalent, at least according to our taxonomy.

(iii) We compute the pairwise cosine similarity of the semantic vectors associated to a set of
pages with the goal of measuring their semantic uniformity. This allows drawing statistics
and using the average similarity as a synthetic score for the whole set.

We consider only the undirected graph PG*, since we can rightfully associate a semantic vector per
node only for pages, and the topology of the directed graph PG is of limited interest. Even though
our framework allows to establish what topics are more relevant in a service or host, it is not likewise
accurate in associating a single semantic vector to each of them.

We start looking at the entire PG*, that, as we saw, is composed of a single connected component.
First of all, in Fig. 8 we show the statistical distribution of the cosine similarity between any two vec-
tors of the graph. Fig. 8 highlights that in most cases cosine(Sp1 , Sp2) ≈ 1 or cosine(Sp1 , Sp2) = 0.
The insight here is that most semantic vectors are significantly unbalanced (i.e., the corresponding
page can be associated with only a small subset of the categories considered), so that any two vec-
tors are either very similar or completely unrelated. The semantic analysis thus seems to confirm
our hypothesis H1.

It is therefore interesting to understand how close to each border are the semantic vectors of our
dataset, i.e., how relevant is each of the topic considered in the dataset. To this end, in Fig. 9
we present graphs showing the statistical distribution of the cosine similarity among pages of
PG* and semantic vectors representing the single categories of our taxonomy. More precisely,
since each category corresponds to a dimension of our vector space, the standard basis vectors
ei = (0, . . . , 0, 1, 0, . . . , 0) model mono-thematic pages in which only topic i is considered. The
statistical distribution of the cosine similarity among pages of PG* and ei tells us how relevant is
topic i in our dataset, and if the relevance of the topic is significantly dependent on the particular
page considered. Let us underline that the cosine similarity between a vector x = (x1, . . . , xn) and
ei is simply xi

||x|| : this means that it does not depend on which other topics that page includes, i.e.,
on xj , j 6= i, but only on the relative “weight” of topic i.

What emerges is that only “information systems” is a very diffused topic in our dataset, whereas
almost all other topics are completely unrelated to the vast majority of the pages. At the same
time, most topics have a non-negligible spike at 1, meaning that there are many pages that can be
associated to a single category of our taxonomy. Again, these results support our hypothesis H1.

0 0.2 0.4 0.6 0.8 1

2

4

6

·10−2

similarity

fr
eq

ue
nc

y

PG* hist

Figure 8: The statistical distribution of the cosine similarity among pages of the PG*.

18

0.85

1
cyber attack

0 0.5 1

0.003

0.006

0.85

1
cyber deception

0 0.5 1

0.006

0.012

0.64
0.7

cyber security

0 0.5 1

0.012

0.024

0.85

1
fraud

0 0.5 1

0.006

0.012

0.85

1
gambling

0 0.5 1

0.001

0.002

0.75
0.8

illicit drugs

0 0.5 1

0.006

0.012

0.85

1
military trafficking

0 0.5 1

0.003

0.006
0.15

0.24
information systems

0 0.5 1

0.025

0.05

0.85

1 IT companies

0 0.5 1

0.001

0.002

0.85

1
media companies

0 0.5 1

0.001

0.002

0.85

1
murder

0 0.5 1

0.005

0.009

0.85

1 racism

0 0.5 1

0.003

0.006

0.85

1 rape

0 0.5 1

0.006

0.012

0.85

1
sex with children

0 0.5 1

0.003

0.006

0.6

0.7
social networks

0 0.5 1

0.025

0.05

0.75
0.8 terrorism

0 0.5 1

0.025

0.05

0.85

1 weaponry

0 0.5 1

0.006

0.012

Figure 9: The statistical distribution of the cosine similarity between pages of the PG* and
semantic vectors that represent the single categories of our taxonomy.

19

Now, we want to assess whether the Tor PG* contains smaller tightly connected components that
exhibit a larger semantic uniformity with respect to the whole graph. To that purpose, we repeatedly
cut off the pages with largest BC score and largest degree so as to split the original single connected
component into a number of smaller components, as described in Section 5.1.3. For each of those
components, we find the average cosine similarity of that component. Since the number of com-
ponents grows quickly, we need a synthetic representation of what happens with different cuts. To
this end, in both Fig. 10 and Fig. 11, for each cut we show a bubble per component: the size of the
bubble is the number of semantic vectors of that component 23, and the center of the bubble is lo-
cated according to the average semantic similarity of the component. We compare the bubbles, i.e.,
single components, with their average (the average of the average) cosine similarity. More precisely,
both figures show both the simple (shortened “Avg”) and the weighted (shortened “W. Avg”) arith-
metic mean of the average similarities, where in the latter each component’s weight is the number
of semantic vectors it contains. The two figures clearly show that we can identify components with
increasing semantic similarity by cutting off the graph nodes with increasing BC score or increasing
degree. Additionally, by comparing the two figures, it emerges that the BC is a better performing
metrics than the degree to the end of identifying semantic uniform sub-components. Although these
results partially support the intuition formalized by hypothesis H1, they also suggest that many link
directories and wikis (that, having the largest degree, but not the largest BC, are not cut off by BC
cuts) are monothematic. While we expected link directories and wikis to be mostly responsible for
connecting regions of the graph that cover different topics, the ability of pages having large BC score
in connecting otherwise disconnected components eventually results more effective.

Cut
49

Cut
59

Cut
72

Cut
92

Cut
500

Cut
1K

Cut
5K

Cut
10K

Cut
50K

Cut
100K

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

Si
m

ila
ri

ty

Avg
W. Avg

Figure 10: Bubble chart for the cosine similarity of different BC cuts. Each bubble corre-
sponds to a component and the size of a bubble is the log of the number of semantic vectors of
its component. “Avg” denotes the average for that cut, “W. Avg” the weighted average, where
each component weighs as its number of semantic vectors.

6 Conclusions

We have identified and addressed a relevant lack of knowledge regarding the Tor seen as a graph.
Starting from state-of-the-art studies and tools, we have devised and implemented a novel approach
for the exploration of the Tor Web, that led to us collecting a rich set of interesting data over the Tor
Web topology and contents. A further in-depth analysis of the obtained experimental data helped
discovering and describing novel relationships between topology and semantics, and allowed a care-
ful reasoning of these results. Indeed, this work shows interesting characteristics of the Tor Web
graph that relate topic semantics and Web graph topology. Such findings contribute to a better un-
derstanding of the Tor usage and contained information. Future work will aim at improving the
coverage of Tor nodes, in particular the relation between the composition of the root set used to start

23As discussed previously in this Section, not all pages are associated with a semantic vector.

20

Cut
13

Cut
29

Cut
43

Cut
82

Cut
500

Cut
1K

Cut
5K

Cut
10K

Cut
50K

Cut
100K

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

Si
m

ila
ri

ty

Avg
W. Avg

Figure 11: Bubble chart for the cosine similarity of different degree cuts. Each bubble corre-
sponds to a component and the size of a bubble is the log of the number of semantic vectors of
its component. “Avg” denotes the average for that cut, “W. Avg” the weighted average, where
each component weighs as its number of semantic vectors.

the crawling and the outcome of the Tor Web exploration. We also aim at analysing the evolution of
the Tor Web graph over time, both from a topological and a semantic point of view.

Acknowledgments

This research work is partially funded by IANCIS 24, a EU ISEC project that involves IAC-CNR,
Expert System and the Italian “Arma dei Carabinieri”, and whose purpose is to build a tool that,
based on Cogito, can crawl and semantically index and cluster Tor pages.
We thank Flavio Vella for his help in measuring the betweenness centrality scores of the graphs
under study.

References
[1] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion

router. In Proceedings of the 13th Usenix Security Symposium, 2004.

[2] Monica J. Barrat. Silk road: Ebay for drugs. Addiction, 107(3):683–683, 2012.

[3] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven Cheung,
Frank Wang, and Dan Boneh. Stegotorus: A camouflage proxy for the tor anonymity system.
In Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS
’12, pages 109–120, New York, NY, USA, 2012. ACM.

[4] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for tor hidden services:
Detection, measurement, deanonymization. In Proc. Symposium on Security and Privacy, SP
’13, pages 80–94, Washington, DC, USA, 2013. IEEE Computer Society.

[5] Daniel Arp, Fabian Yamaguchi, and Konrad Rieck. Torben: A practical side-channel attack for
deanonymizing tor communication. In Proc. 10th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’15, pages 597–602, New York, NY, USA, 2015.
ACM.

[6] Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-Philipp Weinmann. Content and popu-
larity analysis of tor hidden services. In Distributed Computing Systems Workshops (ICDCSW),
2014 IEEE 34th International Conference on, pages 188–193, June 2014.

24http://www.iancis.eu/

21

[7] Martijn Spitters, Stefan Verbruggen, and Mark van Staalduinen. Towards a comprehensive
insight into the thematic organization of the tor hidden services. In Intelligence and Security
Informatics Conference (JISIC), 2014 IEEE Joint, pages 220–223, Sept 2014.

[8] Mike Perry. Torflow: Tor network analysis. http://fscked.org/talks/
TorFlow-HotPETS-final.pdf, 2009.

[9] Robin Snader and Nikita Borisov. Improving security and performance in the tor network
through tunable path selection. IEEE Transactions on Dependable and Secure Computing,
8(5):728–741, 2011.

[10] Robin Snader and et al. A tune-up for tor: Improving security and per-
formance in the tor network. https://www.internetsociety.org/doc/
tune-tor-improving-security-and-performance-tor-network-paper, 2008.

[11] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker. Shining
light in dark places: Understanding the tor network. In Privacy Enhancing Technologies,
volume 5134 of LNCS, pages 63–76. Springer Berlin Heidelberg, 2008.

[12] Gareth Owen and Nick Savage. Empirical analysis of tor hidden services. IET Information
Security, 10(3):113–118, 2016.

[13] Kyle Soska and Nicolas Christin. Measuring the longitudinal evolution of the online anony-
mous marketplace ecosystem. In 24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015., pages 33–48, 2015.

[14] Rob Jansen, Kevin Bauer, Nicholas Hopper, and Roger Dingledine. Methodically modeling
the tor network. In Proc. 5th USENIX Conference on Cyber Security Experimentation and
Test, CSET’12, pages 8–8, Berkeley, CA, USA, 2012. USENIX Association.

[15] Rob Jansen and Nicholas Hopper. Shadow: Running tor in a box for accurate and efficient
experimentation. In Proc. 19th Symp. on Network and Distributed System Security (NDSS).
Internet Society, February 2012.

[16] Kevin Bauer, Micah Sherr, Damon McCoy, and Dirk Grunwald. Experimentor: A testbed for
safe and realistic tor experimentation. In CSET, 2011.

[17] Raymond Kosala and Hendrik Blockeel. Web mining research: A survey. SIGKDD Explor.
Newsl., 2(1):1–15, June 2000.

[18] Soumen Chakrabarti, Amit Pathak, and Manish Gupta. Index design and query processing for
graph conductance search. The VLDB Journal, 20(3):445–470, June 2011.

[19] Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and Robert Baumgartner. Web data
extraction, applications and techniques: A survey. Knowledge-Based Systems, 70:301 – 323,
2014.

[20] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: Compression techniques.
In Proceedings of the 13th International Conference on World Wide Web, WWW ’04, pages
595–602, New York, NY, USA, 2004. ACM.

[21] Francisco Claude and Gonzalo Navarro. Fast and compact web graph representations. ACM
Trans. Web, 4(4):16:1–16:31, September 2010.

[22] Francisco Claude and Susana Ladra. Practical representations for web and social graphs. In
Proceedings of the 20th ACM International Conference on Information and Knowledge Man-
agement, CIKM ’11, pages 1185–1190, New York, NY, USA, 2011. ACM.

[23] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D Sivakumar, Andrew Tomkins, and
Eli Upfal. Stochastic models for the web graph. In Foundations of Computer Science, 2000.
Proceedings. 41st Annual Symposium on, pages 57–65, 2000.

[24] Anthony Bonato. A survey of models of the web graph. In Alejandro López-Ortiz and
AngèleM. Hamel, editors, Combinatorial and Algorithmic Aspects of Networking, volume
3405 of Lecture Notes in Computer Science, pages 159–172. Springer Berlin Heidelberg, 2005.

22

http://fscked.org/talks/ TorFlow-HotPETS-final.pdf
http://fscked.org/talks/ TorFlow-HotPETS-final.pdf
https://www.internetsociety.org/doc/tune-tor-improving-security-and-performance-tor-network-paper
https://www.internetsociety.org/doc/tune-tor-improving-security-and-performance-tor-network-paper

[25] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans M. Coetzee. Self-organization
and identification of web communities. IEEE Computer, 35:66–71, 2002.

[26] JonM. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and AndrewS.
Tomkins. The web as a graph: Measurements, models, and methods. In Computing and
Combinatorics, volume 1627 of Lecture Notes in Computer Science, pages 1–17. Springer
Berlin Heidelberg, 1999.

[27] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan,
Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the web. Computer
Networks, 33(1–6):309 – 320, 2000.

[28] Devanshu Dhyani, Wee Keong Ng, and Sourav S. Bhowmick. A survey of web metrics. ACM
Comput. Surv., 34(4):469–503, December 2002.

[29] Christos Giatsidis, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. Advanced graph min-
ing for community evaluation in social networks and the web. In Proceedings of the Sixth ACM
International Conference on Web Search and Data Mining, WSDM ’13, pages 771–772, New
York, NY, USA, 2013. ACM.

[30] Massimo Franceschet. Pagerank: Standing on the shoulders of giants. Commun. ACM,
54(6):92–101, June 2011.

[31] Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathematicae Debrecen,
6:290–297, 1959.

[32] Mark EJ Newman. The structure and function of complex networks. SIAM review, 45(2):167–
256, 2003.

[33] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution of online social
networks. In Philip S. Yu, Jiawei Han, and Christos Faloutsos, editors, Link Mining: Models,
Algorithms, and Applications, pages 337–357. Springer New York, 2010.

[34] Evgeniy A. Grechnikov. Degree distribution and number of edges between nodes of given
degrees in the buckley–osthus model of a random web graph. Internet Mathematics, 8(3):257–
287, 2012.

[35] Phillip Bonacich. Some unique properties of eigenvector centrality. Social Networks, 29(4):555
– 564, 2007.

[36] Dimitrios Prountzos and Keshav Pingali. Betweenness centrality: Algorithms and implemen-
tations. SIGPLAN Not., 48(8):35–46, feb 2013.

[37] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. Bubing: Massive crawl-
ing for the masses. In Proc. 23rd International Conference on World Wide Web Companion,
pages 227–228, 2014.

[38] Flavio Vella, Giancarlo Carbone, and Massimo Bernaschi. Algorithms and heuristics for scal-
able betweenness centrality computation on multi-gpu systems. CoRR, abs/1602.00963, 2016.

[39] Massimo Bernaschi, Giancarlo Carbone, and Flavio Vella. Scalable betweenness centrality
on multi-gpu systems. In Proceedings of the ACM International Conference on Computing
Frontiers, CF ’16, pages 29–36, New York, NY, USA, 2016. ACM.

Appendix: Software Tools

To explore Tor, extract text and visualize the obtained graphs we made use of a set of open source
tools, namely: Polipo, Bubing, Apache Tika, igraph. To extract metrics from the graphs, we devel-
oped custom software in several languages (mainly C and Java), including the aforementioned Cuda
code for calculating the BC. Finally, we made use of the Cogito proprietary software to construct
the semantic vectors. Readers interested in additional details and in getting our tools are welcome
to contact the authors.

23

	Introduction
	Background and Related Work
	About Tor
	On Tor Flaws
	On Tor Usage
	On Web Exploration and Topology

	Analyzing the Tor graph
	Goals
	Metrics
	Semantic Analysis

	Dataset and Tor Graphs
	The Crawling Process
	On the Root Set Choice

	Experiments, Analysis, and Discussion
	Topology of the Tor Web Graph
	Degree Distribution
	Betweenness Centrality
	Connected Components

	Semantic Analysis of the Tor Web Graph

	Conclusions

