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Introduction and related work
In the presence of an epidemic outbreak, the availability of instruments to guide con-
tainment measures may have an enormous impact on public health, the economy, and 
society. Mathematical modeling and computer simulations provide powerful tools to 
understand the dynamics of epidemic outbreaks, design strategies to control and miti-
gate them, and project decisions and scenarios into potential alternative outcomes. The 
classical compartmental models of disease propagation (Kermack and McKendrick 
1991; Hethcote 2000) describe the system at the population level by grouping individuals 
in sub-populations according to their health states relevant for transmission and track-
ing changes in the sizes of the sub-populations, without specifying which individuals 
are involved. The movements in and out of the compartments are governed by constant 
transition rates in ordinary differential equations, corresponding to exponentially dis-
tributed waiting times in the compartments. This approach assumes a fully-mixed popu-
lation, where an infectious individual is equally likely to spread the disease to any other 
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individual, and it is equivalent to a mean-field. The modeling of epidemic contagion 
has evolved from such simple compartmental schemes to sophisticated data-informed 
models using synthetic populations whose demographics are statistically indistinguish-
able from the census data. Socio-demographic and geographic factors, such as age and 
household distance, are essential in determining contact patterns and disease spreading, 
especially on an urban scale (Illenberger et al. 2013; Walsh and Pozdnoukhov 2011; Del 
Valle et al. 2007; Mossong et al. 2008).

In the last decades, lots of work has focused on incorporating heterogeneous con-
tact patterns in the models. In individual-based models, the population-level behav-
ior emerges from the microscopic interactions between agents that can carry a set of 
attributes such as age, spatial location, and social behavior. Socio-demographic attrib-
utes collected from census data and surveys or integrated with mobile, traffic, or wear-
able sensor data and online tools (Mossong et al. 2008; Cattuto et al. 2010; Mistry et al. 
2020), allow the construction of realistic contact matrices describing the mixing patterns 
in typical social settings (e.g., households, schools, workplaces) (Mossong et  al. 2008; 
Eubank et al. 2004; Merler and Ajelli 2009; Chang et al. 2021). Metapopulation models, 
built using data from inter-population mobility (Hufnagel et al. 2004; Colizza et al. 2006; 
Chang et al. 2021; Tizzoni et al. 2014), allowed remarkable progress in describing how 
the disease travels from one city/nation to the other and estimating epidemic paths pre-
dictability (Colizza et al. 2007). Compartmental models with stochastic and time-varying 
disease transmission rates allow for incorporating control measures and environmental 
variations due to unobserved processes (Cazelles et  al. 2018; Gray et  al. 2011; Bonac-
corsi and Ottaviano 2016). By representing individuals in the population as vertices of 
a graph, network-based models aim to understand how the topological structure of the 
contact network affects the dynamics spreading upon them (Gupta et al. 1989; Newman 
2002; Keeling and Eames 2005; Chakrabarti et al. 2008; Pastor-Satorras et al. 2015).

Ball and Neal (2002, 2008) incorporated some randomness in the classic stochas-
tic Susceptible-Infected-Removed (SIR) model in a closed population, adding to the 
local contacts among neighbors on a social network, also global contacts among pairs 
of individuals chosen at random in the population. This model is also suited to mimic 
multiple transmission routes (Kiss et  al. 2006). In Celestini et  al. (2022), the authors 
address similar questions for epidemics at urban scale by simulating an agent-based SIR 
model in a synthetic urban population. As in Ball and Neal (2008), their model incor-
porates casual contacts on top of a structured set of social relations. In addition, they 
use a data-informed model to obtain an age-structured population connected by a geo-
graphically referenced social network and allow for global casual contacts to be depend-
ent on distance and the age class of an agent. The model assumes that an individual has 
daily contact with her household members, frequent contact with a small network of 
acquaintances (e.g., friends or coworkers), and fortuitous contact with the rest of the 
population. As data about the population density are often available in a discretized 
form, the model used in Celestini et al. (2022) considers a regular tiling of the urban ter-
ritory that induces a partition of the population based on their tile of residence and per-
mits analysis of the geographic diffusion of the disease. According to this model, urban 
epidemic outbreaks are not predictable (as defined in Colizza et al. 2006) because of the 
many possible epidemic pathways. However, the authors highlight that the first infection 
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time and the final fraction of the population infected within a tile correlate to the loga-
rithm of the tile population.

Building on these findings, in this paper, we investigate more in detail how the geo-
graphical distribution of the population influences the spatial and temporal evolution of 
an epidemic disease outbreak at an urban scale, where density patterns may impact the 
epidemic. We focus in particular on two local observables: the tile first infection time τ 
and relative attack rate α , defined as the attack rate within the tile divided by the total 
attack rate. Assuming that the frequency of contacts decays as an inverse power of the 
distance (Liben-Nowell et al. 2005; Illenberger et al. 2013; Kowald et al. 2013; Herrera-
Yagüe et al. 2015; Büchel and Ehrlich 2020), we find that the expected value of τ and α 
can be described efficiently through a metric that we call geographic harmonic centrality 
( HC ). We provide qualitative insights on the relations binding τ and α to HC , and sup-
port our findings through simulations. We find that these relations still hold when the 
model is generalized to include age-based mixing, vertex-intrinsic sociability fitness, and 
multiple levels of mixing with contacts that recur with different frequencies.

SIR epidemics on a real territory: Model and methods
Let us consider a Susceptible-Infectious-Removed (SIR) epidemic model where the 
individuals of the population belong to one of three disjoint compartments: suscepti-
ble ( S ), if they never caught the disease; infectious ( I  ), if they are currently infected 
and contagious; removed ( R ), if they already recovered from or died due to the disease. 
Only two transitions are possible between the three compartments: a susceptible indi-
vidual may become infected ( S → I  ) due to an interaction with an infectious individ-
ual; an infectious individual may spontaneously recover or die ( I → R ). We consider 
a discrete-time synchronous cellular automaton in which the dynamic follows a reac-
tive process (de Arruda et al. 2018). For each time step t = 0, 1, . . . , we denote with S(t) , 
I(t) and R(t) the sets of, respectively, susceptible, infected and recovered individuals at 
time t. The size of these compartments is, respectively, S(t) = |S(t)| , I(t) = |I(t)| and 
R(t) = |R(t)| . The interactions between the individuals of the population are modeled 
by a sequence of temporal contact networks Gt = (V ,Et) , where Et is the set of con-
tacts occurring at time t and (u, v) ∈ Et with probability pu,v independently of all other 
edges. If v ∈ S(t) , for each u ∈ I(t) such that (u, v) ∈ Et , the disease is transmitted from 
u to v with fixed probability β—i.e., the probability that v ∈ I(t + 1) given v ∈ S(t) is 
1−

∏

u∈I(t)(1− pu,vβ) . If u ∈ I(t) , u recovers with a fixed rate µ—i.e., the probability 
that u ∈ R(t + 1) given u ∈ I(t) is µ . We assume that a single individual, called index 
case, is infectious at time 0, i.e., I(0) = 1.

We simulate epidemic outbreaks in the Municipality of Viterbo, Italy, represented 
as a rectangular bounding box inhabited by a synthetic population V of N ≈ 60K  
agents. The territory of Viterbo is partitioned into a grid of n square tiles of fixed side 
l = 500 m and we disregard all tiles having less than 10 residents (see Fig.  1). Each 
agent v has the following three attributes: a tile of residence iv , inferred from density 
estimates provided by the WorldPop Project (Bondarenko et al. 2020); an age-tag gv
—child (0–17), young (18–34), adult (35–64), or elder (65+)—drawn based on census 
data aggregated at the provincial level, provided by the Italian Institute of Statistics 
(ISTAT) (all details can be found in Guarino et  al. 2021); a social fitness score fu , 
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drawn from a Lognormal distribution. The sociability score fu measures u’s tendency 
to interact with other people; using a Lognormal distribution guarantees that the 
degree distribution of the interaction graphs has a heavy-tail and an adjustable mode 
(Guarino et al. 2021). In particular, we set the distribution of fu to have “small” skew-
ness and variance, so that most vertices have degree close to the average and the hubs 
are limited in both number and size (Kertész et  al. 2021). Lognormally distributed 
data occur across several domains (Mitzenmacher 2004)—including social networks 
(Liben-Nowell et al. 2005; Illenberger et al. 2013)—and Lognormal distributions often 
fit the statistical properties of real-world network better than power laws (Broido and 
Clauset 2019). More details on the choice of the fitness distribution can be found in 
Guarino et al. (2021).

In the following, we will initially consider two cases: homogeneous mixing (HM), 
characterized by pu,v = p for constant p > 0 ; distance-based mixing (DM), where 
pu,v ∝ d−1

i,j  for all u ∈ Vi and v ∈ Vj only depends on the distance di,j between Vi and Vj . 
We will then assess, through extensive simulations, whether the predictions obtained 
for the DM model remain valid when pu,v also depends on the social fitness, on the 
age and/or on the underlying social fabric, encoded into a static urban social network 
(USN) that combines synthetic households and acquaintances. Intra-household (e.g., 
kinship) edges are defined by drawing a clique for each household, where the break-
down of the population into households is entirely inferred from the available data. 
Acquaintance edges are instead drawn based on the fundamental assumption that 
the probability of two individuals being “friends” is ultimately governed by their age 
group, their geographical distance, and their sociability. More details on our urban 
social network model can be found in Guarino et al. (2021) and Guarino et al. (2021).

In total, we consider five configurations, summarized in Table 1 and described more 
in details as needed. All configurations are fully dynamic—i.e., the temporal contact 
networks Gt are mutually independent—except for the multi-layer mixing (MLM), in 
which part of the interactions that occur at each time t are selected from the USN 
static social network of “strong ties”.

The configurations are characterized by a fixed expected volume of daily contacts, 
i.e., they all have the same average interaction probability 〈pu,v〉 . In line with Bigger-
staff et al. (2014) and Liu et al. (2018), all the experimental results presented in this 
paper are obtained calibrating the SIR model on a common Influenza Like Illness 

Fig. 1 The territory of the Municipality of Viterbo, tessellated into tiles. The color of each tile show the 
number of individuals living in the area, only tiles having 10 or more residents are considered



Page 5 of 15Celestini et al. Applied Network Science            (2022) 7:39  

(ILI) by setting µ = 1/3 , so that the average time to recovery is 3 days, and 〈pu,v〉β 
such that the expected number of infections caused by a single case in a fully suscep-
tible population is Rindex

0 = 1.3.
The tiling of the city’s territory induces a partition of the population V into n blocks 

{Vi}
n
i=1 , having size |Vi| = Ni . With a slight abuse of notation, Vi will be used to indicate 

both the ith tile and the population living therein. Ii(t) and Ii(t) will denote, respectively, 
the set and the number of infected individuals in block i at time t. The partition of the 
population into tiles mirrors the fact that the spatial density of the population always 
comes at some given resolution. The tiling, however, has no meaningful interpretation: 
at urban scale, in fact, there are no clear boundaries and truly distinct means of trans-
portation (e.g., air vs. road traffic) that permit to identify meaningful sub-populations. 
The probabilistic rule used to establish if u and v come into contact is the same regard-
less of whether u and v belong to the same or to different tiles. Albeit the tiling produces 
a discretization of distances—and, hence, a stratification of contact frequencies—our 
model significantly differs from typical meta-population models, where the local and 
global dynamics of contagion are well separated.

On large scale territories, the high number of possible spreading channels may be 
compensated by the presence of dominant connections in human traffic flow, making 
the geographic spread of the disease predictable (Colizza et al. 2006), in the sense that 
different outbreak realizations present similar patterns of spatial epidemic diffusion over 
time. As shown in Celestini et al. (2022), in our case the predictability of the geographic 
patterns of diffusion of the epidemic is instead limited—at least far from the epidemic 
peak—due to the absence of backbones capable of defining preferred epidemic path-
ways. Still, the stratification of contact frequencies may impact on the “riskiness” of dif-
ferent blocks with respect to epidemic outbreaks. As proxies of riskiness we will use the 
(expected) relative attack rate and local first infection time, defined as follows:

(1)αi =
E[Ri]

E[R]

N

Ni
,

(2)τi = E[min{t : Ii(t) > 0}].

Table 1 The interpersonal contact models used throughout the paper

pu,v is the probability that u and v are connected at each step of the simulation

fu is the Lognormally distributed social fitness of u

sgu ,gv is the data–driven age–based social mixing for u and v’s age groups gu and gv
EH and EA are the edge sets of two static networks, respectively used to represent households and acquaintances (see Sect. 4 
and Guarino et al. (2021) for more details)

Model Contact probability pu,v

Name Acronym

Homogeneous mixing HM constant

Distance–based mixing DM ∝ d−1
u,v

Distance and fitness–based mixing DFM ∝ d−1
u,v fufv

Distance and age–based mixing DAM ∝ sg(u),g(v)d
−1
u,v

Multi–layer mixing MLM = 1 if (u, v) ∈ EH , = 0.5 if (u, v) ∈ EA,

∝ sg(u),g(v)d
−1
u,v fu , fv otherwise
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where R = R(+∞) and Ri = Ri(+∞) denote the final epidemic size, in V and Vi , respec-
tively, and E[·] is the expected value. For all i = 1, . . . , n , αi is the expected attack rate of 
Vi divided by the total expected attack rate, a measure of the chances for an individual 
resident in Vi to be infected with respect to the average population. τi is the expected 
time of the first infection in Vi , a measure of how quickly Vi must be isolated in order 
to protect its sub-population. The expected value in the definition of αi and τi will be 
replaced by the empirical mean in the experimental analysis presented in Sect. 4. In all 
cases, the averages will be computed over 100 independent epidemic outbreaks, simu-
lated with identical configuration parameters, that involve at least 25% of the popula-
tion. We empirically verified that, with a single index case, the epidemic size follows a 
bimodal distribution with a minimum at around 25%N  , so all simulations resulting in 
R/N < 0.25 have been considered cases of early extinction and, as such, discarded.

Geographic distributions of individuals and the spread of epidemics
In the simplest scenario, the geographic distribution of the population impacts the rela-
tive risk of an infection event occurring in a specific local area in two ways: (i) through 
the local population density, and (ii) through the connectedness of the local area to the 
rest of the territory. If we assume that the contact rate of any two individuals depends on 
their household distance, we can quantify the average connectedness of an area in terms 
of its geographical centrality. Thus, the chances for a given area to be reached by the 
contagion ultimately depend on its local density and centrality. To formalize this idea, 
we focus on the relative attack rate α and on the first infection time τ , defined in (1) and 
(2), starting from two simple models: homogeneous mixing (HM) and distance-based 
mixing (DM).

Homogeneous mixing

At this level of description, the geography of an outbreak of size R can be described by 
means of a vector of indices O = (j0, j1, ..., jR−1) such that jh = i if and only if the hth 
infection occurs in Vi (simultaneous infection events are sorted in random order). If we 
assume that the population is homogeneously mixed, all individuals have, on average, the 
same chances of contracting the disease. The probability that jh = i is thus Si(th)/S(th) , 
i.e., the probability that, at the time th when the hth infection occurs, a susceptible indi-
vidual chosen uniformly at random belongs to Vi . Under homogeneous mixing, for fixed 
th , the expected value of the ratio Si(th)/S(th) can be approximated by the local popula-
tion density ρi = Ni/N .

Under these assumptions, Vi ’s epidemic size Ri follows a binomial distribution of 
parameters ρi and R, hence, its expected value is ρiE[R] . This gives:

Let Wi be the number of infection events needed to observe the first infection in Vi , i.e. 
Wi = hi if hi = min{h : jh = i} . Wi follows the geometric distribution ρi(1− ρi)

hi−1 , and 
the expected value of Wi is 1/ρi . In the exponential phase of the epidemic the number of 
contagion events grows exponentially in time and we can assume that the hth contagion 

(3)αi = ρi
N

Ni
= 1.
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event occurs at time th ∝ ln(h) , yielding the following estimate for the first infection 
time:

Connection flow to a sub‑population

In the HM case, the local density ρi = Ni/N  is a good approximation of the probability 
of an infection reaching the ith tile, and it is therefore the key ingredient in determining 
both αi and τi . In many cases, it is possible to partition the population into sub-populations 
{Vi}

n
i=1 and to assume that, at least with good approximation, pu,v ≈ pi,j for all u ∈ Vi and 

v ∈ Vj , i.e., that pu,v mostly depends on the sub-populations of u and v. A simple example is 
the geographic partitioning into subpopulations achieved by dividing a territory with a til-
ing. More generally, one can partition a population based on a combination of geographic 
and demographic attributes, such as location and age.

In this case, the probability that at least one individual of Vi comes into contact with an 
infectious individual is intuitively proportional to the quantity

ki can be interpreted as a per node connection flow to the ith tile: a randomly chosen 
node u ∈ V  has on average ki daily contacts with the nodes v ∈ Vi—i.e., the dynamic net-
work Gt contains, on average, ki edges incident to u and Vi . If we know that none of the 
individuals in Vi is infectious, a better estimate is provided by

which only differs from ki for the fact that the average does not involve the members of 
Vi itself.

The same rationale used for the HM case now brings us to the following general estimate 
for αi in a partitioned population:

Along the same line, if the infection reaches Vi during the phase of exponential growth of 
the epidemic, τi can be estimated as:

(4)τi ≃ − ln(ρi) · const. = − ln

(

Ni

N

)

· const.

(5)ki =
Ni

∑

j Njpi,j

N
=

Ni

N

∑

j

Njpi,j .

(6)k̄i =
Ni

N

∑

j �=i

Njpi,j ,

(7)αi ≃ ki
N

Ni
· const. =

∑

j

Njpi,j · const.

(8)τi ≃ − ln(k̄i) · const. = − ln





Ni

N

�

j �=i

Njpi,j



 · const.
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Distance‑based mixing

Let di,j be the normalized geographic distance between the center of tiles Vi and Vj . 
The normalization is obtained through a division by l

2
 , where l is the tile side. Addi-

tionally, we impose di,i = 1 , so that individuals in the same tile are at half the distance 
of individuals living in neighboring tiles. Finally, we set du,v = di,j for all u ∈ Vi and 
v ∈ Vj . This approximation is often inevitable, at least for small values of l, because 
population density data are generally discrete and we may only have access to the res-
idence tile of a vertex.

In line with previous empirical findings (Liben-Nowell et  al. 2005; Illenberger 
et al. 2013; Kowald et al. 2013; Herrera-Yagüe et al. 2015; Büchel and Ehrlich 2020), 
to model distance-based mixing (DM) we assume that the probability that u ∈ Vi 
and v ∈ Vj come into contact decays as a power of the distance: pu,v = pi,j ∝ d

−γ
i,j  for 

γ > 0 . It is straightforward that substituting pi,j ∝ d
−γ
i,j  in (5) and (6) gives

The right hand sides of (9) and (10) are, actually, measures of geographic centrality. This 
leads us to introduce the following metrics:

HCγ (v) and HC
γ
i  are the harmonic geographic centrality of order γ of vertex v and of tile 

Vi , respectively. H̄C
γ
(v) and H̄C

γ

i  are the outward versions of HCγ (v) and HC
γ
i  that only 

measure the centrality of the individuals v ∈ Vi with respect to the population that does 
not belong to Vi.

Substituting ki∝HC
γ
i  and k̄i∝H̄C

γ

i  in (7) and (8), respectively, we obtain the follow-
ing estimates for the first infection time and the relative attack rate under the DM 
model:

(9)ki ∝
Ni

N

∑

j

Njd
−γ
i,j ,

(10)k̄i ∝
Ni

N

∑

j �=i

Njd
−γ
i,j .

(11)HC
γ (v) =

1

N

∑

u∈V

d
−γ
u,v ,

(12)HC
γ
i = HC

γ (Vi) =
Ni

N

n
∑

j=1

Njd
−γ
i,j ,

(13)H̄C
γ
(v) =

1

N

n
∑

u∈V \Vi

d
−γ
u,v for v ∈ Vi,

(14)
H̄C

γ

i = H̄C
γ
(Vi) =

Ni

N

n
∑

j = 1

j �= i

Njd
−γ
i,j = HC

γ
i −

Ni

N
d
−γ
i,i .
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Experimental analysis
The analysis presented so far suggests that, under the widely accepted hypothesis that 
the frequency of contacts decays with the distance, the riskiness of different areas of a 
city is tied to their local density and geographic centrality.

To support our thesis and to assess whether these findings remain valid under more 
realistic models, in this section we evaluate empirically the distribution of αi and τi for 
five different models. We consider the HM model and the DM model (with γ = 1 ), and 
three other models that include additional factors influencing the patterns of interper-
sonal contacts:

• In the distance and fitness-based mixing (DFM) model, pu,v ∝ d−1
u,v fufv , where fu is a 

measure of u’s social fitness (Caldarelli et al. 2002), drawn from a Lognormal distri-
bution.

• In the distance and age-based mixing (DAM) model, pu,v ∝ sgu,gvd
−1
u,v , where si,j is the 

age-based social mixing for age groups i and j, deduced from aggregated contact data 
(Mossong et al. 2008) through the SOCRATES Data Tool (Willem et al. 2020).

• Finally, in the multi-layer mixing (MLM) model, different sets of edges recur with dif-
ferent probabilities. We first construct two edge-disjoint static networks: the house-
hold graph GH = (V ,EH ) , composed of a clique for each synthetic household drawn 
based on census data (Guarino et  al. 2021); the acquaintance graph GA = (V ,EA) , 
where, for each u, v ∈ V  , (u, v) ∈ EA independently of all others with probability 
ψu,v = sgu,gvd

−1
u,v f

′
uf

′
v ( f ′u �= fu is extracted independently of fu , but from the same dis-

tribution). Household relations induce a static frame of daily contacts, i.e., pu,v = 1 
for all (u, v) ∈ EH , while acquaintance relations induce frequent contacts, with 
pu,v = 0.5 for all (u, v) ∈ EA . All (u, v) /∈ E = EH ∪ EA have pu,v ∝ sgu,gvd

−1
u,v fufv . 

Thus, in this model part of the connections—all (u, v) ∈ EH—are static.

To allow for a fair comparison, in all configurations pu,v is normalized so that 
∑

u<v pu,v = |E| . This guarantees that the expected density of Gt and, thus, the expected 
number of potential contagion events 

∑

u<v pu,vβ are fixed. The choice of 1 as the dis-
tance dependence exponent, and of a Lognormal fitness distribution is justified on an 
empirical basis in Guarino et  al. (2021) to best represent social contacts at the urban 
level. In the MLM model, a fixed social network instance is considered, so that all fluc-
tuations are due to epidemic dynamics.

All the figures presented in the current section are scatterplots fitted by a linear regres-
sion model, with a dot for each tile of the territory of Viterbo. Since each epidemic simu-
lation is inherently stochastic, each run reaches a possibly different subset of tiles. Grey 
dots in the plots represent tiles that are reached by only a fraction of the simulations and 
that are ignored by the linear regression due to their inherent bias. Configurations with 

(15)αi ≃
N

Ni
HC

γ
i · const.,

(16)τi ≃ − ln(H̄C
γ

i ) · const.
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more constrains generally reach fewer tiles, but, in all cases, the tiles in grey in the plots 
account for less than 3% of the population of Viterbo, in total. More details about the 
impact of the configuration parameters upon the outcomes of the spreading process are 
given in Celestini et al. (2022).

Relative attack rate

Figure 2 shows αi as a function of ρi = Ni/N  for the HM model (panel a) and as a func-
tion of NNi

HC
γ
i  for the other four configurations described in the previous section (panels 

b–e). The homogeneous mixing case reported in panel (a) is shown only as a confirma-
tion of the expected behavior. Panel (b) depicts the trend of αi for the DM case, the good 
agreement with (15) is the first confirmation that HC1

i  , weighted by N/Ni , is indeed a 
good candidate to predict the epidemic spread when the frequency of contacts decays 
as d−1 . Adding fitness to the model (DFM configuration, panel (c)) yields more hetero-
geneity to the degree of nodes and apparently weakens the role of HC

γ
i  as a predictor of 

the relative attack rate. For DAM and MLM (panels (d) and (e), respectively), however, 
we see again a good agreement with (15). Let us remind that in the MLM model both 
the static acquaintance graph and the fully dynamic part of the interaction graph are 
built relying on a social fitness score that guarantees a heavy-tailed degree distribution. 
Nonetheless, NNi

HC
γ
i  is a good predictor of αi for the MLM configuration (Fig. 2e), con-

trary to the DFM (Fig. 2c). The insight is that the approximation works even for hetero-
geneous networks, provided that a significant volume of interactions tend to recur over 
time. Finally, in all panels (except (a)) we see that the relative attack rate (and thus the 
final epidemic size in each tile) grows linearly with HC

γ
i  : the more central the tile is, the 

greater the fraction of its population that is infected.

(a) HM. (b) DM.

(c) DFM. (d) DAM. (e) MLM.
Fig. 2 The dependence of αi upon Ni and HC1i for the five considered models
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First infection time

Figure 3 shows the plot of τi versus H̄C
γ

i  . Despite the range of τi being highly depend-
ent on the configuration—with more heterogeneous models corresponding to faster 
epidemics—all panels show a very good agreement between the average time of first 
infection in the simulations and the value predicted by  (16). For all the configurations 
tested the time of first infection decreases linearly with the logarithm of H̄C

γ

i  . In particu-
lar, as expectable, the most centrally located tiles are infected first.

Characterizing epidemic front waves
Based on (16), the epidemic front waves, i.e., the sets of tiles having equal τ , can be char-
acterized by the condition

for some constant H. Given the spatial distribution of the population, we would like to 
predict the shape of these contours on the city map, but the geographic interpretation of 
(17) is not straightforward. In this section, we study these epidemic front waves to see 
if they can be described using some simple features of Vi , ideally, its population and its 
location in the territory. To this end, we observe that

i.e., H̄C
γ

i  is Ni times the average of H̄C
γ
(v) over the elements of Vi , which disentangles 

the dependance of τi on the population and the position of Vi . Condition (17) can now be 
reformulated as

(17)ln

(

H̄C
γ

i

)

= H

H̄C
γ

i = Ni�H̄C
γ
(v)�i,

(a) HM. (b) DM.

(c) DFM. (d) DAM. (e) MLM.

Fig. 3 The dependence of τi upon H̄C
1

i for the five considered configurations
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Arguably, in most real world cities �H̄C
γ
(v)�i is correlated, to some extent, with the dis-

tance dC ,i of Vi from the center of the city. The actual relation between �H̄C
γ
(v)�i and 

dC ,i depends on the spatial density of the considered population, but the intuition that 
these two quantities are correlated is validated empirically in Fig. 4, where a relation of 
the type �H̄C

γ
(v)�i ∝ e−dC ,i seems to emerge, regardless of whether we consider the real, 

uniform or shuffled population density for Viterbo—here, we identified C as the tile hav-
ing max HC1.

As a consequence of the estimated relation �H̄C
γ
(v)�i ∝ e−dC ,i , the epidemic front 

waves can be characterized by a simpler condition of the type

for a, b > 0 . This relation can be clearly seen in Fig. 5, where we grouped the tiles having 
similar τ and we included a linear regression for each class. While in the HM model τ 
only depends on the population, as per equation (4), in the DM model (Fig. 5a, c) the epi-
demic front waves lie along parallel non-horizontal lines in the dC ,i, ln(Ni) plane—albeit 
with variable slope according to the configuration parameters. The different shapes that 
these epidemic front waves take on the map show the role that the (generally, positive) 
correlation between the centrality of a tile and its population have in shaping the riski-
ness map of urban epidemics.

Conclusions
Thanks to the current availability of data regarding human mobility flows, the large-
scale spreading of a disease is, to some extent, predictable (Colizza et al. 2006). To the 
best of our knowledge, it has not been ascertained whether major backbones of disease 
propagation also exist at the urban scale. In our previous work (Celestini et  al. 2022), 
we explored the consequences of the widely-acknowledged assumption that the fre-
quency of contacts decays as an inverse power of the distance (Liben-Nowell et al. 2005; 
Illenberger et al. 2013; Kowald et al. 2013; Herrera-Yagüe et al. 2015; Büchel and Ehrlich 
2020). We found that this distance-based stratification of contacts is not enough to make 
the geographic spreading of urban epidemics predictable. Yet, we also showed that het-
erogeneity in population distribution reflects onto a local variation of epidemic timing 
and severity. Building on Celestini et al. (2022), in this paper we formalize the relative 
riskiness of living in different areas of a city by means of a suitable metric of geographic 
centrality.

(18)ln(Ni) = − ln

(

�H̄C
γ
(v)�i

)

+H

(19)ln(Ni) = adC ,i + b

(a) Real density. (b) Uniform density. (c) Shuffled density.

Fig. 4 ln
(

�H̄C
1
(v)�i

)

 versus dC ,i , for different population densities
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To measure the riskiness of a specific portion of the considered territory, we consider 
the relative attack rate and the first infection time. We find two closed-form expres-
sions that approximate these two quantities when the rate of interpersonal contacts only 
depends on household distances. Both expressions can be formulated in terms of a new 
metric of geographic harmonic centrality, that quantifies the average connectedness of 
a local area with the rest of the territory. By means of simulations, we provide empirical 
evidence that our results can be generalized to more heterogeneous contact patterns.

The risk evaluation obtained in this way is independent of the actual evolution of the 
epidemic and can be done from geographic and demographic information only. In addi-
tion, under reasonable assumptions, the epidemic front waves can be characterized by a 
simple condition that depends on the local population density and on the distance from 
the city center. Our results can thus potentially inform containment strategies at a local 
scale.

It would be interesting to extend this analysis to the regional scale and compare our 
predictions and simulation results with actual epidemic data, where available. Another 
possibility we intend to explore is to replace the distance with the traveling time between 
different blocks, to include urban environments where physical barriers, such as a river 
or a railway constrain mobility within the city.
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(a) Epidemic front waves for
DM.

(b) Epidemic front waves
for DM w/ uniform density.

(c) Epidemic front waves for
DM w/ shuffled density.

(d) Epidemic front waves
for DM on the map.

(e) Epidemic front waves for
DM w/ uniform density on
the map.

(f) Epidemic front waves for
DM w/ shuffled density on
the map.

(g) Real density. (h) Uniform density. (i) Shuffled density.

Fig. 5 Epidemic front waves, characterized in terms of their population and centrality (a–c), and shown on 
the map of Viterbo (d–f), together with the corresponding population density (g–i)
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