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Abstract

Tor hidden services allow offering and accessing various Internet resources while
guaranteeing a high degree of provider and user anonymity. So far, most re-
search work on the Tor network aimed at discovering protocol vulnerabilities to
de-anonymize users and services. Other work aimed at estimating the number
of available hidden services and classifying them. Something that still remains
largely unknown is the structure of the graph defined by the network of Tor ser-
vices. In this paper, we describe the topology of the Tor graph (aggregated at
the hidden service level) measuring both global and local properties by means of
well-known metrics. We consider three different snapshots obtained by exten-
sively crawling Tor three times over a 5 months time frame. We separately study
these three graphs and their shared “stable” core. In doing so, other than assessing
the renowned volatility of Tor hidden services, we make it possible to distinguish
time dependent and structural aspects of the Tor graph. Our findings show that,
among other things, the graph of Tor hidden services presents some of the charac-
teristics of social and surface web graphs, along with a few unique peculiarities,
such as a very high percentage of nodes having no outbound links.

1 Introduction

Research efforts on The Onion Router network (Tor) have recently flourished, focusing on evalu-
ating its security [1], understanding its evolution [2], and discussing its thematic organization [3].
Nevertheless, the limited number of entry points to Tor on the surface Web makes it difficult to fully
uncover many of Tor’s characteristics. In particular, despite some insights provided over the last
years [4, 5, 6, 7], few information are available regards the topology and the volatility of the Tor net-
work. In this study we exploit three sets of crawling data collected over three different time frames
to present a thorough analysis of the structural properties of the graph of Tor Hidden Services (HS)
that makes it possible to tell apart persistent from variable characteristics.



Similarly to the surface WWW [8], the structure of the Tor HS Web graph can be seen as an indicator
of intrinsic characteristics of the Tor network and of latent patterns of interactions among Tor users.
Since the work of Watts & Strogats [9] and Barabasi & Albert [10] it has been widely recognized that
the in-depth study of the properties of the underlying graph is crucial for determining behavioral and
structural aspects of a complex system, and for understanding and possibly explaining the emergence
of specific features in real world networks. Our efforts for identifying the distinguishing traits of the
topology of the Tor Web can therefore be of great help to shed light on the usage patterns, the
dynamics and the vulnerabilities of the Tor network.

The paper also addresses the evolution of the Tor Web graph showing the actual changes that take
place in the quality and quantity of available services and in the persistence of their inter-connections
over time. In particular, we provide a rich set of results and discussions on deltas over time that allow
for detailed reasoning on Tor Web connection/topological trends. To the best of our knowledge there
are no similar studies on the Tor Web. Our present study, albeit limited as regards its timeframe,
therefore provides useful information and hints to foster further research in the area.

The rest of the paper is organized as follows: Section 2 reviews background information and re-
lated work; Section 3 describes the methodology used for collecting data, extracting the graphs and
studying their properties; Section 4 analyzes the obtained graphs and details on results; Section 5
discusses in depth our findings, in comparison with well-known graph models; finally, Section 6
draws conclusions and suggests directions for future work.

2 Background and Related Work

Past research work on Tor has mainly been devoted to assess its vulnerabilities. However, as a
positive side effect, novel data and insights on Tor services and network have been obtained.

Biryukov et. al. [1] in 2013 exploited a Tor vulnerability to collect all hidden service descriptors in
approximately 2 days using a modest amount of resources. They found out that, while the contents
of Tor hidden services is rather varied, the most popular hidden services were related to botnets. It
is worth noticing that their approach cannot be reproduced, because they exploited a Tor bug that
was fixed in recent versions of the software.

In a previous work [4], we leveraged automated Tor network exploration to the purpose of relating
semantic content similarity with Tor topology at the page, host, and service level. The present work
largely extends on both data collection and analysis over [4].

Also Ghosh et. al. [11] developed an automated tool to explore the Tor network and analyze the
contents of onion sites. Their classification framework maps onion site content to a set of categories,
and clusters services to categorize onion content. The main difference with respect to our work is that
they focus on page content/semantics, and do not consider network topology. Owen et. al. [12], by
operating 40 relays over a 6 month time frame, reported over hidden services persistence, contents,
and popularity. Their aim was classifying services based on their content.

Similarly to our present work, Christin et. al. [6] collected crawling data on Tor hidden services
over an 8 month lifespan. They evaluated the evolution/persistence of such services over time, and
performed a study on the content and topology of the explored network. The main difference with
our present work is that the Tor graph we explore is much larger, not being limited to a single
marketplace. In addition, we present here a more in depth evaluation of the graph topology. De
Domenico et. al. [13], used the data collected in [14] to study the topology of the Tor network
. They gave a characterization of the topology of the Darknet and proposed a generative model for
the Tor network to study its resilience. Their viewpoint is quite different from our own here, as they
consider the network at the autonomous system (AS) level.

Very recently Griffith et. al. [7] performed a topological analysis of the Tor hidden services graph.
They crawled the Tor network using the commercial service scrapinghub.com, through the tor2web
proxy onion link. Interestingly, they reported that more than the 87% of Darkweb sites never link
to another site. The main difference with our present work lies in both the extent of the explored
network (we collected a much more extensive dataset than that accessible through tor2web) and the
depth of the analysis of the network itself (we evaluate a larger set of network characteristics).
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Differently from the Literature on the Tor network, the topology of the WWW has been the subject
of a large number of studies in the past. In this paper we also aim at comparing Tor network
characteristics with those of the surface Web, briefly surveyed below.

Among random graph models suitable for the surface Web [15],[16] Kleinberg in particular [17]
introduced algorithms for improved Web search and automatic community discovery, thus providing
one of the first publicly known portraits of the Web graph. Kleinberg also stressed that traditional
random graph models, such as the well-known Erdős-Rényi model [18] do not exhibit many prop-
erties of the Web graph. Among other studies on the WWW, Broder et. al. [8] discovered the
heavy-tailed distribution of node degrees, claiming a power-law distribution, and the presence of
large hubs along with a peculiar structure of the graph they called bow-tie. Bearing in mind that the
adopted crawling technique affects the structure of the results, subsequent studies have somewhat
reached different results, [19, 20, 21]. In a recent work Meusel et. al. [22] analyzed the structure
of the WWW at different levels: pages, hosts and pay-level domain. The last aggregation level
can be seen as the Tor service level and we will discuss similarities and differences of their results
compared to our findings on the Tor HS graph.

3 Methodology

In this Section we describe the methodology used for collecting data, building the graphs and study-
ing their properties.

3.1 Data Collection

We aim at characterizing the portion of the Tor Web that can be accessed by using a custom web
scraping procedure. Specifically, we assembled a large root set by merging onion urls advertised on
well-known Tor wikis and link directories (e.g., “The Hidden Wiki” 1), or obtained from standard
(e.g., Google) and Tor-specific (e.g., Ahmia) search engines. Then, in the 5-month time frame
between January 2017 and May 2017, we launched our customized crawler three times and let each
execution run for about six weeks. Thus, we obtained three different “snapshots” of the Tor Web,
denoted SNP1, SNP2, and SNP3, respectively.

The numbers of our datasets, reported in Table 1, are comparable to – and, as a matter of fact, greater
than – similar studies in the Literature [3, 23, 7]. Yet, if we refer to the statistics provided by the
Tor Project for the corresponding time window 2, our crawls only reached 25% to 35% of the total
number of daily published hidden services. It is not clear to which extent those estimates are inflated
by the existence of Tor-specific messaging services in which each user is identified by a unique onion
domain [7] and by hidden services that do not host websites. In any case, reaching all active onion
urls is not arguably possible with ordinary resources 3 and, to the best of our knowledge, the present
study is the widest exploration of the Tor Web performed so far.

Table 1: Outcomes of the three crawling processes.

Crawl End Date # records per response type
2xx 3xx 4xx 5xx Total

SNP1 22/02/17 1821842 277813 197128 141205 2437989
SNP2 10/04/17 2339718 471519 262403 324552 3398192
SNP3 22/05/17 765876 393018 105406 67115 1331415

A status code 3xx is related to Web redirection (https://www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html).
Status codes 4xx and 5xx are error codes.

1wikitjerrta4qgz4.onion
2https://metrics.torproject.org/hidserv-dir-onions-seen.html?start=2017-01-01&end=2017-05-01
3Tor’s working principles make it possible to run a hidden service whose existence is only known to the

relays where the introductory points of that service are published [24].
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To access the Tor network and to collect data from hidden services we evaluated different crawlers.
In particular, we evaluated the following alternatives: Apache Nutch 4 [25], Heritrix 5 [26] and
BUbiNG [27]. By considering criteria such as performance, configurability and extensibility, we
found BUbiNG to be the most appropriate choice for our goals. BUbiNG is a high-performance,
scalable, distributed, open-source crawler, written in Java, and developed by the Laboratory for
Web Algorithmics (LAW) part of the Computer Science Department of the University of Milan.
To allow BUbiNG to operate in the Tor network (instead of the surface Web), we used a HTTP
Proxy configured with the SOCKS Proxy provided by Tor. After testing some alternatives we chose
privoxy 6. In particular, we decided not to use polipo 7 that is often used in combination with Tor,
because it is no longer maintained and seemed unable to correctly manage the format of some HTTP
responses. During the crawling phase we observed that some hidden services check the user-agent
of the requester and, if it does not match the last version of the Tor Web browser, they reply with an
error. This behavior had to be taken into account when collecting data, to allow the crawler to reach
the largest possible portion of hidden services. Another issue that raised during the crawling is the
load of the Tor client, i.e., the software used to access Tor. We noticed that under stress (i.e., when
too many requests are performed in parallel), the Tor client, quite often, does not respond correctly,
i.e., it may mistakenly report that a hidden service is not available, even if the service is actually up
and running. The maximum load depends on the specifications of the machine where the software
runs, and we assessed it for our configuration during the experimental phase.

3.2 Graph Extraction

For each one of the three snapshots we extracted the associated directed Tor Service Graph (SG)
aggregating pages at the service level. To extract the graph we used the Graph Builder module of
the toolkit presented in [28]. In the SG, each node represents the set of pages belonging to a hidden
service, i.e., a Tor domain identified by a sequence of 16 characters (base32 encoded).8 In the SG an
edge connecting one hidden service to another represents the existence of at least one page of the first
service that contains a hypertextual link to any page of the second service. Since we only analyzed
onion links, all surface web services and all edges from/to the surface web have been ignored and
have not been included in the graphs. We believe including surface web nodes/links would have
introduced a bias in the Tor network analysis, due to the large difference in scale between the two
underlying graphs. Even just introducing surface border nodes would have affected the analysis and
it would not have added relevant information.

To further clarify how we built the graphs, let us consider the following example, depicted in Fig-
ure 1. We found the hidden service:

duskgytldkxiuqc6.onion

to host three pages:

duskgytldkxiuqc6.onion/comsense.html;
duskgytldkxiuqc6.onion/fedpapers/;
duskgytldkxiuqc6.onion/fedpapers/federa02.htm.

To represent these resources we use a single node in the SG.

Besides the SGs of the three snapshots acquired with our crawls, we considered a fourth graph
representing Tor’s “stable core”. It corresponds to the communal subgraph of SNP1, SNP2 and
SNP3 induced by the edges that appear in all the three graphs.

4http://nutch.apache.org
5https://webarchive.jira.com/wiki/display/Heritrix
6https://www.privoxy.org
7https://www.irif.fr/ jch/software/polipo/
8In October/November 2017 a new generation of hidden services was introduced and supported

by the Tor browser. They are identified by character sequences of length 56 instead of the usual
16 (https://blog.torproject.org/tors-fall-harvest-next-generation-onion-services). This change was introduced
after our data collection period ended in May 2017.
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duskgytldkxiuqc6.onion

duskgytldkxiuqc6.onion/comsense.html
duskgytldkxiuqc6.onion/fedpapers/

duskgytldkxiuqc6.onion/fedpapers/federa02.htm

Hidden Service

Pages

Figure 1: An example of graph construction

3.3 Graph Analysis

As a first step towards the understanding of Tor dynamics, we compare macroscopic features of
the four graphs to assess the persistence of Tor hidden services and of their connections. Next, we
characterize the four graphs on both a global and on a local scale. Specifically, for each graph:

• We compute a set of global metrics, including measures of centralization, transitivity and
efficiency.

• We extract the in- and out-degree distribution and assess whether these distributions follow
a power law.

• We count the number of strongly connected components and characterize the giant strongly
connected component (LSCC in the following).

• We consider several centrality measures, draw their distribution and match them with one
another.

• We provide and analyze a bow-tie decomposition of the graphs under study.

Based on all gained pieces of information, we infer the general structure of the four graphs, spot-
ting differences and highlighting common aspects that may be assumed to define the topology of
Tor hidden services. Additionally, we identify a small set of hidden services that seem to play an
especially important role in the graph and, through direct examination, we aimed at explaining why.
All symbols and metrics used in the paper are summarized in Table 2.

4 Results

In this Section we report and briefly comment the results of our analysis.

4.1 Services Persistence

As showed by other studies [1, 23, 12], there is a huge variability in the persistence of Tor hidden
services. This must be carefully taken into consideration in any attempt of characterizing the topol-
ogy of the Tor Web graph, because by scraping the Tor network we only obtain a snapshot of the
hidden services that were active at the time the crawler issued a connection request. More generally,
even for the surface Web there is evidence that the crawling process may affect the structure of the
extracted graph, leading to incomplete or wrong conclusions [31]. We therefore repeated the entire
data collection phase three times over five months in an effort to reduce variance and guarantee the
consistency of our results. As a side benefit, we are able to further assess the renowned volatility of
Tor hidden services, other than possibly telling apart time dependent from structural features of the
Tor web graph.

As a starting point, Figure 2 shows how the total body of accessed hidden services is distributed
across the three snapshots. SNP2 clearly emerges as the largest dataset, but this is not surprising
if we compare our results with the statistics provided by the Tor Project 9, that show a spike of
published hidden services in the second half of March 2017. We note that 10685 hidden services
were found by all three crawling runs, suggesting that these services were durably present over the
considered five month time frame. This core set represents the 83.3% of services reached during
SNP1, the 42.2% of services reached during SNP2 and the 61.2% of services reached during SNP3.
We also see that all pairwise intersections are not empty, meaning that during our data harvesting

9https://metrics.torproject.org/hidserv-dir-onions-seen.html?start=2017-01-01&end=2017-05-01
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Table 2: Notations and definitions used throughout the present paper.
Symbol Definition
G = (V,E) Graph with vertex set V and edge set E
N Number of nodes: N = |V |
M Number of edges: M = |E|
D Density: M

N(N−1)

δin Minimum in-degree
∆in Maximum in-degree
δout Minimum out-degree
∆out Maximum out-degree
〈deg〉 Average in/out-degree
ρ Assortativity: see (26) in [29]

Cin
In-degree centralization:
N∗∆in−

∑
v∈V

degin(v)

(N−1)2

Cout
Out-degree centralization:
N∗∆out−

∑
v∈V

degout(v)

(N−1)2

C
Global clustering coefficient:
# closed triplets

# all triplets

T1
Global transitivity of type 1:
#(u,v,w): u→v∧v→w∧w→u

#(u,v,w): u→v∧v→w

T2
Global transitivity of type 2:
#(u,v,w): u→v∧u→w∧(v→w∨w→v)

#(u,v,w): u→v∧u→w
σvu Number of shortest paths from v to u
σvu(t) Number of shortest paths from v to u including t
dist(v, u) Shortest path length from v to u
d Diameter: maxv∈V maxu∈V dist(v, u)
rin Radius with in-paths: minv∈V maxu∈V dist(u, v)
rout Radius with out-paths: minv∈V maxu∈V dist(v, u)
〈dist〉 Average shortest path length

Ein
Global efficiency with in-paths:

1
N(N−1)

∑
u<v∈V

1
d(v,u)

Eout
Global efficiency with out-paths:

1
N(N−1)

∑
u<v∈V

1
d(u,v)

B Betweenness centrality: B(v) =
∑
s6=v 6=t∈V

σst(v)
σst

PR PageRank: see [30]

process (at least) 1612 hidden services disappeared, 3066 new hidden services appeared, and most
notably, 76 hidden services reappeared after having gone inactive at some point in time. There is also
the possibility that some of the hidden services that disappeared in a snapshot were actually active
but not reachable by our crawler, for instance due to all paths to those services being temporarily
unavailable.

The question now arises of whether hidden services found in two or more snapshots induce the
same subgraph in the corresponding snapshots. The answer, summarized in Table 3 by looking
at edge density, is no. As a consequence, if we aim at identifying the stable core of our dataset
we should not just look at durable hidden services, but we must refer to durable edges. The total
amount of durable edges turns out to be 28914, but somewhat surprisingly, one of these edges is
isolated from the rest. The common subgraph induced by the set of stable edges consists of two
weakly connected components: (i) a giant one, denoted CORE graph in the following, composed of
7669 vertices and 28913 edges, and (ii) a tiny one composed of a single edge connecting the hidden
service violet77pvqdmsiy.onion to the hidden service typefacew3ijwkgg.onion.
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Figure 2: Services persistance over time: inner disc is SNP1, middle disc is SNP2, outer disc is
SNP3.

Table 3: Density of the subgraphs induced by different nodesets intersections in different graphs.
Nodeset Density

in SNP1 in SNP2 in SNP3

SNP1 ∩ SNP2 0.000474 0.000461 nd
SNP1 ∩ SNP3 0.000588 nd 0.000507
SNP2 ∩ SNP3 nd 0.000516 0.000435
SNP1 ∩ SNP2 ∩ SNP3 0.000595 0.000584 0.000511

4.2 Global Metrics

The global properties of our four graphs (the three snapshots plus the CORE graph) are summarized
in Table 4 and in Table 5. As already mentioned, there is a significant variance in the sizes N and
M of the three snapshots, which is however consistent with publicly available aggregated statistics.
A common aspect is the lack of a very large hub gathering most of the connections, opposed to the
presence of a single vertex that links to, respectively, 44%, 51% and 61% of the whole network.
By manual inspection, we found that these onion urls are Tor link directories, not surprisingly. We
also checked that the hidden services with greater in- and/or out-degree are generally persistent over
the three snapshots, although their rank in the top-degree chart may change. Yet, stability is not a
common property of all high-degree hidden services, in fact: (i) SNP3 is the only graph including a
vertex with in-degree 1464 (which explains the larger Cin of that graph), (ii) in the CORE graph the
ratios ∆in/N and ∆out/N are comparably smaller with respect to the snapshots, and (iii) in general
all parameters strictly related to the presence of hidden services with large in- and/or out-degree (D,
∆in, ∆out, 〈deg〉, ρ, Cin and Cout) appear to be variable over time. The vertex with in-degree 1464
is the hidden service dhosting4okcs22v.onion that is a hosting service named Daniel’s Hosting.
Tor users can get a hosting account on the server of the hidden service. The website specifies
few rules regarding the contents that can be hosted for the purpose of avoiding illegal or offensive
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material. The same hidden service contains several sections including a link directory, but each
section is registered with a different onion address, i.e., a different hidden service.

Transitivity and clustering coefficients are also variable across time, but in this case the correspond-
ing values for the CORE graph are close to the average of the three snapshots, suggesting that the
variance is due to statistical fluctuations in the composition of a network with many volatile nodes.
In general the overall frequency of triangles C is substantially in line with the average degree 〈deg〉
(as we will better discuss in Section 5), with cycles (T1) being more frequent than other types of
triangles (T2). The diameter d is stable and logarithmic in N for all graphs, and the ratio of r and d
suggests a certain level of symmetry in the graph. The average shortest path length 〈dist〉 is instead
consistently smaller than log(N), an important factor in determining to what extent the graph resem-
bles a random graph (again, more details will be given in Section 5). Finally, the global efficiencies
Ein and Eout, which should be comparable to 1/〈dist〉 in uniformly connected networks, are in-
stead diluted by the fact that many pairs of nodes are disconnected (i.e., have no paths connecting
each other).

Table 4: Global metrics computed for the services graph of each snapshot

metrics Graph
SNP1 SNP2 SNP3 CORE

|V | 12833 25308 17460 7669
|E| 72556 113014 103402 28913
D 0.00044 0.00018 0.00034 0.00049
δin 1 1 1 0
∆in 204 262 1464 55
δout 0 0 0 0
∆out 5603 12852 10664 2670
〈deg〉 5.65562 4.46554 5.92222 3.77011
ρ -0.319 -0.32655 -0.16206 -0.37393
Cin 0.01546 0.01018 0.08352 0.00668
Cout 0.43637 0.50769 0.6105 0.34775
C 0.00943 0.00407 0.00492 0.00873
T1 0.00617 0.00779 0.00253 0.00535
T2 0.0039 0.0016 0.00197 0.00356
d 10 12 10 10
rin 5 7 5 0
rout 0 0 0 0
〈dist〉 3.79316 4.96028 3.66455 3.98291
Ein 0.00549 0.00386 0.02095 0.00371
Eout 0.00531 0.00366 0.01965 0.00318

Table 5: Snapshot Data Details

snp #scc LSCC size out-degree 0 in-degree 1

SNP1 12305 466 90.77% 17.478%
SNP2 24433 820 94.74% 43.15%
SNP3 15029 2371 83.32% 24.43%
CORE 7477 169 95.5% 25.09%

4.3 Degree and Centralities

To deepen our understanding of the structure of the Tor Web graph, we now analyze the distribution
of a few metrics that quantify the importance of single vertices in the topology of the network and
that can be used to gain an insight into the dynamics and the information flow in the graph. Many
measures have been introduced in the last 50 years to understand who occupies critical, or central,
positions in a network [32]. We chose to focus on the in- and out-degree, the PageRank and the
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betweenness centrality, which are among the most commonly used to describe real-world graphs
because they respond to semantically different notions of “vertex centrality”. The definition of
PageRank and betweenness centrality is reported in Table 2.

Figures 3a and 3b show the distributions of, respectively, in-degree and out-degree for all four graphs
on a log-log scale. Based on Figure 3a, the in-degree distribution seems to follow a power law
decay at least for degrees lying in some intermediate range between ∼ 10 and ∼ 60. This is not
surprising: power law degree distributions are typical in social and web networks, as we will better
discuss in Section 5. To confirm this intuition, we fitted a power law to the distribution using the
statistical methods developed in [33]. In particular, we relied on the implementation provided by the
POWERLAW python package [34]. POWERLAW autonomously finds a lower-bound kmin for degrees
to be fitted, and tries to fit the whole tail unless a context-driven upper-bound kmax is explicitly
provided by the user. We also used Fibonacci binning [35], as done in a previous work about the
surface WWW [31], to show how the distribution looks like if a logarithmic binning is used to
smoothen the tail. Two aspects of the obtained fit must be underlined: (i) for SNP2 and SNP3 the
α exponent is greater than the threshold 3 that is known to control the variance of the distribution,
whereas for SNP1 α is close to 2.9 and for the CORE graph it is 2.7; (ii) the kmin returned by
POWERLAW is, respectively, 11, 16, 17 and 5, but the vertices with in-degree greater than or equal
to this kmin are only 1624 (∼ 12.67%) in SNP1, 1155 (∼ 4.56%) in SNP2 and 964 (∼ 5.52%)
in SNP3, whereas they are 1779 (∼ 23.20%) in the CORE graph, which also has a shorter tail.
Summing up, the in-degree provides a further element in support of the intuition that the structure
of the CORE graph differs significantly from the snapshots.

Figure 3b makes apparent that the out-degree distribution does not follow a power law. Yet, there
are at least two remarkable aspects in this distribution. On the one hand, vertices of out-degree 0
weight 83% up to 95%, according to the graph (this number is reported only in the legend since
k = 0 is cut-off by the log scale ). In other words, a vast majority of Tor’s hidden services do not
link to any other hidden service. On the other hand, the distribution has a long tail, meaning that
the large value of ∆out observed in Section 4.2 is not an isolated case, but rather an evidence of
a general trend. To better understand how easily the whole graph can be explored from just a few
starting points, in Figure 4 we plot the cumulative percentage of the network that is at distance one
from the top out-degree vertices. We see that the top-3 and top-6 out-degree hidden services suffice
to reach more than 90% of the graph in just one click in SNP3 and SNP2 respectively. In SNP1 we
need the top-20 out-degree hidden services to reach the same percentage of the graph, whereas with
the top-6 out-degree services we reach 80% of the nodes. This phenomenon is less evident for the
CORE graph, albeit 10 hidden services still contain direct links to more than 80% of the network.

Figures 3c and 3d show the distributions of, respectively, the PageRank and the betweenness cen-
trality for all four graphs on a log-log scale. We opted for a log-log scale in order to make these
distributions directy comparable with the in- and out-degree, other than with one another. This is
especially important for the PageRank because it has been shown that in many real-world networks
(e.g., in scale-free networks) the PageRank distribution “mimics” the in-degree distribution, follow-
ing a power law with very similar exponent [31]. According to the data points plotted in Figure 3c,
this may not seem to be the case for the Tor Web: although it has a heavy tail the decay looks much
faster than a power law. However, since PageRank is a continuous metrics, a power law decay can
only be appreciated graphically when using a suitable binning. We therefore proceeded exactly as
for the in-degree by using POWERLAW to fit the distribution and by applying Fibonacci binning to
have a more reliable visual perspective. Unfortunately, the apparently good fit plotted in Figure 3c
only regards a minimal portion of the graph: it is only valid for 723 vertices (∼ 5.64%) of SNP1,
772 vertices (∼ 3.05%) of SNP2, 298 vertices (∼ 1.71%) of SNP3 and just 113 vertices (∼ 1.47%)
of the CORE graph. For what concerns the betweenness centrality, in all four graphs the long tail
and the fast decay are accompanied by more than 90% of the vertices having B(V ) = 0. This is not
surprising since, by definition, all vertices having out-degree 0 must have betweennes 0. Figure 3d
partially resembles Figure 3b, suggesting that due to the huge percentage of sinks and to the greater
imbalance of the out-degree with respect to the in-degree, in the Tor Web the out-degree impacts on
the betweenness of a hidden service more that its in-degree. To confirm or deny this intuition, and
more generally to assess the level of correlation between different centrality measures, in Figure 5
we plot the pairwise comparison of (normalized) in-degree, out-degree, PageRank and betweenness
centrality.
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(a) In-degree distribution (b) Out-degree distribution

(c) PageRank distribution (d) Betweenness distribution

Figure 3: Probability distribution of centrality measures.

Figure 4: Cumulative percentage of the graph linked by the top out-degree vertices.
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(a) In-degree vs. out-degree (b) In-degree vs. PageRank

(c) In-degree vs. betweenness (d) Out-degree vs. PageRank

(e) Out-degree vs. betweenness (f) PageRank vs. betweenness

Figure 5: Pairwise comparison between centrality measures.
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4.4 Bow-Tie Structure

As commonly done to describe Web graphs [8], in Table 6 we provide a bow-tie decomposition
of our graphs compared with previous results from the literature. Our findings broadly confirm
what emerged in [7], i.e., that the difference between the Tor Web and the WWW is huge and well
synthetized by two facts: the LSSC is very small and it lies “on top” of everything else. However,
with respect to [7] we implemented a more thorough data collection that brings to the light three
novel features of the Tor Web. First, there exists a nonempty set of active hidden services that are
completely disconnected from the rest of the graph. Second, the share of the LSCC in the total size
of the graph is significantly variable over time, to the point that in SNP3 it is ∼ 4× larger than in
the other two snapshots. Finally, the structure of the CORE graph has a few peculiarities: the IN
component is non-empty, but instead it is composed of a tiny set of 9 hidden services; the LSCC is
even smaller than in the snapshots; the DISCONNECTED component is significanly larger, meaning
that in general hyperlinks are more volatile than hidden services.

Table 6: Bow-Tie structure

Component WWW from [31] Tor from [7] SNP1
# nodes % # nodes % # nodes %

LSCC 22.3M 51.94% 297 4.14% 466 3.63%
IN 3.3M 7.65% 0 0.0% 0 0.0%
OUT 13.3M 30.98% 6881 95.86% 12367 96.37%
TUBES 17K 0.04% 0 0.0% 0 0.0%
TENDRILS 514k 1.2% 0 0.0% 0 0.0%
DISCONNECTED 3.5M 8.2% 0 0.0% 0 0.0%

Component SNP2 SNP3 CORE
# nodes % # nodes % # nodes %

LSCC 820 3.24% 2371 13.58% 169 2.2%
IN 0 0.0% 0 0.0% 9 0.12%
OUT 24488 96.76% 15089 86.42% 7415 96.69%
TUBES 0 0.0% 0 0.0% 1 0.01%
TENDRILS 0 0.0% 0 0.0% 74 0.97%
DISCONNECTED 0 0.0% 0 0.0% 1 0.01%

LSCC is the largest strongly connected component.
IN is the set of nodes v ∈ V \ LSCC such that there is a path from v to LSCC.
OUT is the set of nodes v ∈ V \ LSCC such that there is a path from LSCC to v.
TUBES is the set of nodes v ∈ V \ (LSCC ∪ IN ∪OUT) such that there is a path from IN to v as well as a
path from v to OUT.
TENDRILS is the set of nodes v ∈ V \ (LSCC ∪ IN ∪OUT) such that there is either a path from IN to v or
a path from v to OUT, but not both.
DISCONNECTED is the set of all other nodes v ∈ V \ (LSCC ∪ IN ∪OUT ∪ TUBES ∪ TENDRILS).

4.5 Top Hidden Services by Centralities

Considering the pairwise comparison of in-degree, out-degree, PageRank and betweenness of each
hidden service shown in Figure 5, we observed that the most interesting services are usually link
directories. In SNP1 we find fhostingesps6bly,, the service with the top in-degree and PageRank
values, that contains an URL redirection10 to the Hidden Wiki whose current onion address is zqk-
tlwi4i34kbat3. The Hidden Wiki is a Tor link directory, probably the most famous. In SNP1 we
find also underdj5ziov3ic7 that is the service with the top betweenness and out-degree values. This
service contains a Tor link directory named UnderDir - The Undernet Directory. The last service
in SNP1 is blockchainbdgpzk that is the service with the second PageRank and in-degree values.
This service contains an URL redirection to a surface website of a company named Blockchain
Luxembourg S.A.R.L. that offers services related to digital currencies.

10The HTTP Status Code used for an URL redirection/URL forwarding is a 3XX status code
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In SNP2 we find tt3j2x4k5ycaa5zt that is the service with the top PageRank and second in-degree
values; it contains a personal website named Daniel’s Home. In the website a section is dedicated to
a collection of Tor links. In SNP2 we find also zlal32teyptf4tvi that is the top betweenness and second
out-degree service. This service is a Tor link directory named Fresh Onions. The last service in
SNP2 is vj5wxqmjaes2bae5 that has the top out-degree value, it contains a Tor link directory.

In SNP3 we find dhosting4okcs22v that is the service with top PageRank, betweenness and in-degree
values; it contains a hosting service named Daniel’s Hosting. This is a section of the website we
found in SNP2 named Daniel’s Home. It uses a different onion address, but it is actually the same
website. The last service in SNP2 is zlal32teyptf4tvi that is the service with the top out-degree value
containing the Tor link directory named Fresh Onions, that we found in SNP2.

Finally in CORE we find blockchainbdgpzk and underdj5ziov3ic7 that are respectively the services
with the top PageRank, second in-degree service and the top betweenness, out-degree values. We
already discussed these two onion addresses for SNP1. In CORE we find also grams7enufi7jmdl that
is the service with the second in-degree value. This service contains a Tor search engine focused on
Tor marketplaces. The last service in CORE is zqktlwi4fecvo6ri that is the service with the second
betweenness value and it contains an URL redirection to the Hidden Wiki.

5 Discussion

In this Section we read and discuss our findings in the light of the body of work on real world com-
plex networks. Aiming at assessing to which extent the Tor Web graph fits the three most-known
generative models for random graphs – Erdos-Renyi (ER) [36], Watts-Strogatz (WS) [9], Barabasi-
Albert (BA) [10] – we focus on three properties that are especially informative: the average shortest
path length (or average distance), the clustering coefficient (or transitivity) and the shape of the de-
gree distribution. Notably, these three characteristics are also known to be discriminatory in many
practical settings, such as: for predicting the growth dynamics of a network [37], for controlling
the spreading of viruses/rumors [38], or for determining the robustness against random node fail-
ures [39].

For what concerns the average distance, the question is whether the Tor graph looks like a small
world or even an ultra-small world network. In small world networks the average distance satisfies
〈dist〉 ∝ ln(N), whereas in ultra-small networks 〈dist〉 ∝ ln ln(N). Although the latter are asymp-
totic estimates, our numbers suggest that Tor belongs, at least, to the class of small world networks:
for all four graphs considered (the three snapshots and the CORE) 〈dist〉 satisfies 3.5 < 〈dist〉 < 5,
whereas 2 < ln ln(N) < 2.5 and 8.5 < ln(N) < 10.5.

The global clustering coefficient measures the frequency of closed triangles in the graph, thus rep-
resenting an indicator of the existence of some level of correlation in the adjacency patterns of
neighboring vertices. If edges occur independently and uniformly at random, the clustering coeffi-
cient C satisfies C ∝ 〈deg〉

N , where 〈deg〉 is the average degree of the network. Again, although the
latter is only an asymptotic estimate, our findings speak in favor of the existence of a positive cor-
relation for Tor edges. For directed graphs, other than the global (undirected) clustering coefficient
it is possible to consider a few types of directed transitivities: we chose two such metrics, denoted
T1 and T2 and defined in Table 2. Similarly, the average degree can be computed both ignoring or
considering edge directions, and the value reported in Table 4 for 〈deg〉 is the average number of
in-bound or (equivalently) out-bound edges, thus C should be compared with 2〈deg〉

N in our case. In
all four Tor graphs, C is one order of magnitude greater than 2〈deg〉

N , and both T1 and T2 are one
order of magnitude greater than 〈deg〉

N .

Finally, when looking at the degree distribution of a network, the first aspect to consider is whether
it has a heavy tail, which is symptomatic of the tendency of nodes to connect to “authoritative”
hubs. By looking at Figures 3a and 3b it is clear that this is the case for the Tor Web. However,
while the in-degree distribution seems to follow a power law for all four graphs, albeit with different
exponents, the out-degree shows an even slower decay and an even longer tail.

Our findings make it clear that the Tor Web is not an ER graph. In the ER random graph model with
N vertices and with expected degree 〈deg〉, the expected average distance satisfies 〈dist〉 ∝ ln(N),
but the expected global clustering coefficient is C ∝ 〈deg〉

N and the degree distribution has no heavy
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onion PAGERANK Topic
grams7enufi7jmdl 0.053 Market SE
deepdot35wvmeyd5 0.048 Market
lchudifyeqm4ldjj 0.046 Market
zqktlwi4fecvo6ri 0.045 Hidden Wiki
tmskhzavkycdupbr 0.041 Market
onion BETWEENNESS Topic
auutwvpt2zktxwng 6331 Directory
zqktlwi4fecvo6ri 6105 Hidden Wiki
deepdot35wvmeyd5 3036 Market
torpress2sarn7xw 2766 News/Blogs
torvps7kzis5ujfz 2396 News/Blogs

Table 7: Best 5 nodes with respect to PageRank and betweenness centrality.

tail. The WS model predicts that 〈dist〉 ∝ ln(N) and thatC � 〈deg〉
N , thus suiting our findings quite

well. Yet, the values of C measured in our four graphs are not as large as in other real-world small
world networks [38, 10, 9]. Additionally, the WS model alone does not predict the observed power
law distribution of the in-degree. The power law degree distribution is the defining property of the
BA model. However, the BA model theoretically predicts the existence of two regimes according to
whether the power law exponent α satisfies 2 < α < 3 or α > 3. In the former case, the variance of
the distribution diverges and the network is ultra-small. In the latter, the variance of the distribution
is finite and the network is small. The existence of this threshold is not visible in our findings: SNP1
and CORE have 2 < α < 3, whereas SNP2 and SNP3 have α > 3, but all four graphs have very
similar average distance and degree distribution. Although real networks cannot have an infinite
variance, if N is large enough, node degrees should span several orders of magnitude if and only if
2 < α < 3, but this seems not be the case for the out-degree in Tor.

Summing up, Tor shows a blend of different features and a deeper analysis is needed to understand
whether any existing generative model matches its characteristics. Among Tor’s unique features,
we observe that the overall structure is clearly dominated by the presence of a small number of
out-hubs, which connect both central and peripheral nodes. It is also worth noting that the sizes of
the LSCCs are relatively small compared to those reported by other studies on the surface WWW
or social networks [38, 10, 40]. It is interesting that the nodes in the LSCC core are persistent in
the three snapshots, suggesting that some subnet inside Tor could have specific properties and even
a different structure with respect to the whole network.

Many questions that are still open require further analysis. Tor is built with anonymity in mind thus
many hidden services are supposedly not interested in having visibility, yet some of its topological
features, e.g. the radius and diameter, suggest the existence of a peculiar mechanism that leads to the
growth of the network. On the practical side, one may be especially interested in understanding how
the existence of large out-hubs impacts on the topological properties of the network, and whether
topologically similar nodes host analogous contents. To provide a few insights in this regards, we
removed from the CORE set the 10 services with maximum out-degree and analyzed the LSCC of
the obtained graph, depicted in Figure 6. The most remarkable finding is that, albeit the average
shortest path remains almost unchanged, the obtained network has a clustering coefficient more than
20 times larger than that of a random graph of equal size. We also found that out-hubs are almost
all hidden directories and we have some evidence that other centrality measures can be related to
the content of the hidden services. In particular, as reported in Table 7, 4 out of the top 5 PageRank
services are related to marketplaces, whereas high betweenness seems not equally characteristic of
a specific category of services.

6 Conclusions

This paper studied three sets of crawling data collected over three different time frames as well as
their common “stable” core. It provided a deep characterization of the topology of the Tor services
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Figure 6: The LSCC of the CORE graph.
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graph, identifying structural and temporal features and further assessing the persistence of hidden
services and hyperlinks.

While previous work only focused on the volatility of Tor hidden services, thanks to a graph-oriented
perspective we were also able to assess the persistence of Tor hyperlinks. This led to the key finding
that edges are more volatile than nodes in the Tor Web graph, as proved by the fact that hidden
services shared by two or more snapshots do not induce the same subgraph in these snapshots.
Additionally, we observed that the LSCC of the CORE graph is persistent in all three snapshots.
Compared with the generally high volatility of the Tor network, this is the first evidence that Tor
may be comprised of different layers, each with a precise role in the connectivity patterns of the
network, and possibly with different inter- and intra-layer structures.

We computed several topological metrics on the Tor snapshots and compared them to well-known
network models (ER, WS, BA). None of those models appears to be suitable to accurately repre-
sent Tor. A small number of out-hubs connecting both central and peripheral nodes dominates the
structure of the graph, whereas LSCCs are (relatively/due proportions made) smaller than those of
the surface Web or social networks. By removing the out-hubs with higher degree, the clustering
coefficient of the network grows but the average shortest path remains almost constant: this again
suggests that additional insights into Tor’s dynamics could be obtained by removing and/or isolat-
ing specific subnets. Centrality metrics also indicate that there could be some interesting relation
among node role/position and content: nodes with higher degree are almost always link directories,
whereas we found that four out of five nodes in the top PageRank are related to marketplaces. While
these results do not suffice to draw a clear picture, they surely indicate that further research must be
carried out 11.

We believe the results presented here will foster a larger discussion on the topic, and will be a useful
reference for evaluation and comparison against other real-world graphs.
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