
Design, Implementation and Test of a Flexible
Tor-Oriented Web Mining Toolkit

Alessandro Celestini
Institute for Applied Computing (IAC-CNR),

Via dei Taurini 19, Rome, Italy
a.celestini@iac.cnr.it

Stefano Guarino
Institute for Applied Computing (IAC-CNR),

Via dei Taurini 19, Rome, Italy
s.guarino@iac.cnr.it

Abstract

Searching and retrieving information from the Web is a primary activity needed
to monitor the development and usage of Web resources. Possible benefits in-
clude improving user experience (e.g. by optimizing query results) and enforcing
data/user security (e.g. by identifying harmful websites). Motivated by the lack of
ready-to-use solutions, in this paper we present a flexible and accessible toolkit for
structure and content mining, able to crawl, download, extract and index resources
from the Web. While being easily configurable to work in the “surface” Web, our
suite is specifically tailored to explore the Tor dark Web, i.e. the ensemble of
Web servers composing the world’s most famous darknet. Notably, the toolkit is
not just a Web scraper, but it includes two mining modules, respectively able to
prepare content to be fed to an (external) semantic engine, and to reconstruct the
graph structure of the explored portion of the Web. Other than discussing in detail
the design, features and performance of our toolkit, we report the findings of a
preliminary run over Tor, that clarify the potential of our solution.

Keywords Dark Web, Tor Web graph

1 Introduction

As the Web has become the main means for information exchange and retrieval, a whole body of
work focuses on gaining a better understanding of its content and shape, in order to improve usabil-
ity and security. A few seminal papers [1, 2, 3] allowed drawing the first publicly known portrait
of the “surface” Web, thus paving the way for further research which, over the last two decades,
provided significant results: the optimization of search algorithms [4] and Web data extraction [5],
the identification of efficient compressed representations [6, 7, 8], the proposal of suitable repre-
sentation (i.e. graph based) models [9, 10], just to name a few. Web mining becomes an even more
interesting/challenging task when the target includes the submerged Internet contents usually known
as “deep” Web (estimated to sum up to more than 90% of the whole World Wide Web (WWW)),
not crawled/indexed by traditional search engines. In general, while search engines are specifically
tailored to respond to user queries with popularity as one of the key preferential criteria, the hetero-
geneous and unstructured nature of data available on the WWW calls for flexible Web mining tools
able to extensively gather, organize, index and analyse Internet resources.

A recent research trend is especially focused on the subset of the deep Web usually called “dark”
Web. This is the collection of web resources that exist on darknets, describable as overlay networks,
which despite leaning on the public Internet require specific software, configuration or authoriza-
tion to access. Among darknets, Tor (The Onion Router 1) is probably the most known and used.

1https://www.torproject.org/



It is a communication network designed as a low-latency, anonymity-guaranteeing and censorship-
resistant network, relying on an implementation of the so-called onion routing protocol [11]. Its
servers, run by volunteers over the Internet, work as routers to allow Tor users to access the Inter-
net anonymously, evading traditional network surveillance and traffic analysis mechanisms. Other
than guaranteeing an anonymous access to normal websites, Tor allows running anonymous and
untraceable Web servers, known as hidden services, that can only be accessed using a Tor-enabled
browser. A hidden service is identified by its onion url and it is not associated with any (visible) IP
address. Tor is able to interpret such urls and forward data packets to and from a hidden service,
guaranteeing anonymity in both directions. Hidden services can offer various kinds of services, not
just Web servers, without needing to reveal the location of the site. The main reason why both the
research community [12, 13, 14, 15, 16] and society/media are increasingly showing interest in Tor
is that a completely anonymous network represents the perfect breading ground for illegal activities:
Tor hidden services have been accused to provide protection to terrorists 2, and are known to host
marketplaces for drugs, weapons and pedo-pornography [17]. Mining the structure and content of
the Tor dark web is a primary instrument to gain a better understanding of how Tor works and how
it is being used, with a direct impact on both user experience and security.

Despite publicly available and effective crawlers do exist [18, 19, 20, 21, 22], we feel that the
research community lacks a sufficiently general-purpose configurable solution for addressing (deep,
dark) Web mining. The purpose of this paper is exactly to fill that gap, by presenting the design,
implementation and test of a toolkit which can be easily used to automatically explore the Web. In
our suite, Web crawling is made very “user-friendly” by letting a coordinator module control the
spider, i.e. the software concretely responsible of jumping from site to site along hyperlinks. All
collected data are extracted and indexed, and can be easily forwarded for content mining to any
external semantic engine accessible through RESTful APIs. Additionally, our solution integrates a
module that reconstructs the explored Web graph, thus allowing structural/topological analysis. We
introduce our toolkit in a Tor-oriented guise, but it can be tuned to work on any subset of the Web,
at the cost of a minor configuration effort.

To support the potential of our solution, we also report the highlights of a preliminary (yet wide)
exploration of the Tor dark Web. These preliminary tests were run in the context of the “IANCIS”
ISEC Project 3, and the presence of Expert System 4 as project partner gave us the access to their
data analysis solutions. Specifically we had the opportunity of using their tool Cogito 5 as external
semantic engine, as reported in Section 4. An extensive analysis of our findings lies beyond the scope
of the present paper, whose focus is on design and implementation, and it is to be found in [23].
However, by making our toolkit available on demand and providing a preview of its capabilities, we
are confident to give new impetus to the Web mining literature, and to pave the way for the extension
of the body of work related to Tor and other similar darknets.

This paper is organized as follows: Section 2 presents a review of related work; Section 3 details the
design and the performance of our framework; Section 4 discusses a set of preliminary findings that
highlight the relevance of the proposed tool; finally, Section 5 reports a few concluding remarks and
directions for future work.

2 Related Work

The Tor network has attracted significant attention from the research community, interested both in
assessing its security with respect to de-anonymization attacks, and in understanding which threats
a publicly available anonymous communication system could expose society to. One of the main
research directions over Tor analysis consists in studying how Tor is used and what kind of contents
its websites host, with the aim of understanding whether the charge of providing protection and
anonymity to criminals is indeed well deserved. Spitters et al. [16] present a study focused on the
analysis of Tor hidden services contents. They apply classification and topic model techniques to
analyse the contents of over a thousand Tor hidden services, in order to model their thematic organi-

2http://www.bloomberg.com/news/articles/2014-10-15/how-anti-is-spies-fight-terrorism-with-digital-tools
3DG Home Affairs ISEC Programme 2013 - Project IANCIS “Indexing of Anonymous Networks for Crime

Information Search”, 2014-2016, GA n. HOME/2013/ISEC/AG/INT/4000005222 - www.iancis.eu
4http://www.expertsystem.com/
5http://www.expertsystem.com/cogito/

2



zation and linguistic diversity. Their results indicate that most hidden services in their data set exhibit
illegal or controversial contents. Along the same line, Biryukov et al. [15] give an overview of Tor
hidden services, studying 39824 hidden service descriptors collected in 2013 [13], and analysing
and classifying their contents. At the time of the crawl they were able to connect to 7114 destina-
tions, but half of them were excluded because inappropriate for classification, ending up with 3050
destinations. Their results show that resources devoted to criminal activities (drugs, adult content,
counterfeits, weapons, etc.) constitute 44%, whereas the remaining 56% are devoted to a number of
different topics: “Politics” (9%) and “Anonymity” (8%) are among the most popular. Biryukov et
al. also estimate the popularity of hidden services by looking at the request rates for hidden service
descriptors by clients. They find that, while the content of Tor hidden services is rather varied, the
most popular hidden services are related to botnets. Even if the approach used by Biryukov et al.
for hidden service descriptors collection cannot be reproduced (they exploited a bug of Tor, fixed in
recent versions of the software) other authors presented similar studies. Owen and Savage [24] anal-
ysed hidden services’ contents resorting to manual classification, while Biryukov et al. used topic
modelling techniques. Other works focus their attention on specific subsets of Tor hidden services,
like blogs, forum or marketplaces. An example is [25], where Soska and Christin present a study
focused on Tor marketplaces showing interesting evolutionary properties of the anonymous market-
place ecosystem. The authors perform a specific Tor Web crawling, collecting data from 16 different
marketplaces over more than two years, without focusing on a specific category of products. The
results of their study suggest that marketplaces are quite resilient to law enforcement takedowns and
large-scale frauds. They also evidence that the majority of the products being sold belong to drugs
category.

Web crawling is a well-studied topic, and several successful crawlers’ design have been pro-
posed [18, 20, 22]. Nevertheless, research interest in the subject is still significant, with recent
studies concentrating on focus and specialized crawlers. As a matter of fact, to extract specific
information from Web sources like blogs, forums or websites it is usually necessary to design a
customized crawler. An example is the BlogForever Crawler [26] presented by Blanvillain et al.,
whose goal was to develop a crawler able to automatically extract information from blog posts (e.g.
articles, authors, dates and comments). The crawler is actually a component of the BlogForever
platform whose aim is to harvest, preserve, manage and reuse blog content. Zhao et al. [27] pro-
pose SmartCrawler a framework for efficient harvesting deep Web interfaces. Authors show that
SmartCrawler is capable of achieving both wide coverage of deep Web interfaces and maintain-
ing highly efficient crawling. Another example of special purpose crawler is TwitterEcho, an open
source crawler proposed by Bošnjak et al. [28]. TwitterEcho is a Twitter crawler, which allows re-
trieval of Twitter data from a focused community of interest. The crawler is designed as distributed
application enabling the crawling of high volumes of data, while respecting the limits imposed by
Twitter. Authors state that TwitterEcho was designed to support academic researchers or analysts
who wish to carry out research with focused Twitter data.

We observe that in general the crawling of particular types of websites, such as Tor’s hidden services,
requires the use of tailored approaches and customized tools. Specifically, we evaluated different
alternatives for the development of our general-purpose crawler, including the implementation of
a crawler prototype from scratch, and finally choosing BUbiNG [19] as the base for our crawler
component. We additionally support the use of focused crawlers to improve data collection, with the
possibility to merge data gathered resorting to different crawlers in a single dataset. This approach
drove the design and implementation of our toolkit.

3 The Toolkit

We now present our toolkit, whose components and workflow are summarized in Figure 1. It consists
of a core application for massive Web crawling, indexing and text mining, and of two external
independent modules for customized/focused crawling and structure mining respectively 6.

6Researchers interested in using/testing our toolkit are invited to contact us. Other than to sharing the latest
version, we will be available for support in all configuration aspects, including the integration of different
semantic text analysis modules.

3



Figure 1: Components and workflow.

3.1 The Core Application

At the heart of the toolkit is a core application in charge of automatically exploring Tor websites
and collecting their contents, while indexing and clustering gathered data. Based on an analysis
of other applications oriented to the collection and analysis of data, we designed the core of our
toolkit around four main components, all written in Java: a coordinator, a crawler, an extractor and
an analyser. To manage the operations of the Java application two scripts are provided to start and
stop its execution.

In the following, we describe the toolkit’s core application more in detail: we start with an overview
of its components and workflow, that prompts us to report on implementation and operational as-
pects; we then summarize all possible configuration options, pointing out the most important ones;
finally, we focus on the crawler, discussing its design and functionalities.

3.1.1 Components and Workflow

The main process of the core application, that we developed from scratch, is the coordinator, re-
sponsible of organizing the operations of other units. When launching the tool, the coordinator is
activated and it starts reading the configuration file and setting up the application. It checks the
existence of the database and creates one if it does not exist. After initialization procedures, the
coordinator activates the crawler, the process which concretely performs the task of visiting Tor
websites.

The crawler carries out a breadth-first search of Tor websites and stores all retrieved resources in a
WARC archive. A list of known hidden services, the root set, is provided to the crawler to determine
the data collection starting points. When the archive reaches a threshold size, the coordinator stops
the crawler. The threshold size of the archive is a configuration parameter, which can be modified in
the configuration file. Once the crawler stops, the coordinator moves the WARC archive and creates
a new empty file, which will be used by the crawler at its next activation, then the extractor starts.

The extractor is a multi-thread process that concurrently reads and extracts text from resources
contained in the WARC archive (and/or in a file system directory, see Section 3.1.2). The extractor
reads the WARC archive, extracts texts from collected data and stores them in a database. To extract
text from digital documents, the extractor uses the Apache Tika API 7. Apache Tika is a project
of the Apache Software Foundation, providing a java toolkit able to detect and extract metadata
and text from over a thousand different file types. The extractor only stores texts from web pages
that replied successfully during the crawling (HTTP status code “200 OK”), and it filters extracted
texts according to specific configuration options (e.g. on a language basis). All data are stored
in a document-oriented database, in which each web resource is stored as a document. For each
web resource the extractor stores: (i) the HTTP response header, (ii) the WARC record header,
(iii) the metadata provided by Tika, (iv) the extracted text, and (iv) the language of the document’s

7https://tika.apache.org

4



text. Specifically, we use ArangoDB 8, a multi-model, open-source, NoSQL database with flexible
data models for documents, graphs, and key-values. It supports ACID transactions if required and
provides a SQL-like query language or JavaScript extensions. Once the extractor terminates its
operations, the coordinator activates the analyser.

The analyser is a multi-thread process that concurrently reads documents from the database and
sends their texts to the semantic engine, for analysis. For each document the analyser prepares a
RESTful request, containing its text and language, and sends the request to the engine. The engine
sends back analyses results, which are again stored by the analyser in the initial database, together
with other document’s information. Once all documents have been analysed, the coordinator stops
the analyser.

In our test, reported in Section 4, the analyser relies on Cogito, a multi-language semantic engine
developed by Expert System, which can understand the meaning in context within unstructured text.
Cogito is able to find hidden relationships, trends and events, transforming unstructured data into
structured information. Through several analyses, it identifies three different types of entities (peo-
ple, places and companies/organizations), categorizes documents on the basis of several taxonomies
and it is able to extract entity co-occurrences. Since Cogito is a proprietary software, it cannot be
included in any freely available version of our toolkit. Yet, our analyser can be used out-of-the-box
with any semantic engine providing RESTful APIs. Embedding the analyser with other options for
text mining is our primary goal for further development of the toolkit.

3.1.2 Configuration

The application behaviour can be set up by modifying a Java properties file, named “con-
fig.properties” (see Table 1 for a list of all available configuration parameters). First of all, through
the configuration file it is possible to determine what operations the application will perform, by
selecting any subset of the three building blocks, i.e. crawling, extraction, and analysis. If the ex-
tractor is enabled, either or both of two supported modalities can be selected namely extraction from
WARC and extraction from file. In the first modality the extractor uses a WARC file, in the latter it
uses a file system directory to retrieve resources to elaborate.

A number of options can be specified through the configuration file, including: (i) the number of
threads used by the extractor and the analyser agents; (ii) the threshold size of WARC archives
generated by the crawler – when that size is reached, the archive is passed to the extractor and a new
archive is created by the crawler; (iii) the directory used by the crawler to store data; (iv) the name
of the database to be created or used to store documents; (v) the name of the database’s collections
used by the extractor and the analyser agents; (vi) the directory used by the extractor to retrieve file
– in case the extraction from file modality has been activated. Moreover, it is possible to activate the
file system data storage option, i.e. data produced by crawler, extractor and analyser can be stored
locally in the file system, keeping in mind that a copy of the same data is stored in the database by
default. Finally, the configuration file contains the address and other parameters used to contact the
RESTful web service exposed by the semantic engine. The settings concerning the RESTful web
service allow the use of different engines whether remote or local, for the analysis of textual data.

3.1.3 The Crawler

We evaluated different alternatives for the development of the crawler. In particular, we implemented
a crawler prototype from scratch and evaluated it against three main existing candidates: Apache
Nutch 9 [29], Heritrix 10 [21] and BUbiNG [19]. Considering several criteria, such as performance,
configurability, extensibility and supportability, we found BUbiNG to be the most appropriate choice
as the base for our crawler component. BUbiNG is a high-performance, scalable, distributed, open-
source crawler, written in Java, and developed by the Laboratory for Web Algorithmics (LAW) at
the Computer Science Department of the University of Milan.

Significant efforts were needed for the integration of BUbiNG within our toolkit, so as to turn it into
an application’s component under the control of the coordinator. Moreover, we needed to enable
BUbiNG operating in Tor instead of the surface Web. Whereas, by default, BUbiNG presents a set

8https://www.arangodb.com
9http://nutch.apache.org

10https://webarchive.jira.com/wiki/display/Heritrix

5



Table 1: List of all available configuration parameters (file ‘config.properties’).
Parameter Description
extractorThreads number of threads used by the extractor

analyserThreads number of threads used by the analyser

dbUser username used to access the database

dbPassword password used to access the database

dbName name of database used to store documents

extractedDocCollection name of database’s collection used to store extracted text

analysedDocCollection name of database’s collection used to store analysed text

crawling enable/disable crawling operation

extraction enable/disable extraction operation

analysis enable/disable analysis operation

crawlerDir directory used by crawler to create WARC files

extractWARC enable/disable extraction from WARC, requires ’extrac-
tion=true’

extractFile enable/disable extraction from file, requires ’extraction=true’

fileDir directory containing files to extract, requires ’extractFile=true’

languageFilter a comma separated list of languages, only texts in these lan-
guages are stored and analysed

warcSizeThreshold threshold size of WARC archive, when reached crawler is
stopped and extraction agent is started

storeFilesExtraction enable/disable storage of texts extracted on file system

dirFilesExtraction directory used to store texts extracted, requires ’storeFilesEx-
traction=true’

storeFilesAnalysis enable/disable storage of analysis results on file system

dirFilesAnalysis directory used to store analysis results, requires ’storeFilesAnal-
ysis=true’

storeFilesCrawling enable/disable storage of crawled data on file system

dirFilesCrawling directory used to store crawled data, requires ’storeFilesCrawl-
ing=true’

engineHost host name of RESTful web service

enginePath invoked endpoint of RESTful web service

engineKey key used to invoke RESTful web service

engineKeyFieldName name of the form field used to store ’engineKey’

of threads that perform DNS requests, in our application we avoid these requests and send them
directly to a HTTP proxy. We chose to use privoxy 11, after testing other alternatives. In particular,
we decided not to use polipo 12, that is often used in combination with Tor, because it is no longer
maintained and currently seems not able to manage correctly the format of some HTTP responses.
However, any HTTP proxy configured to use Tor can be used. Through the crawler configuration file,
that is a Java properties file named ‘crawler.properties’, it is possible to specify which HTTP proxy
the crawler must use. Several other parameters can be set through that configuration file, including:
(i) the number of threads the crawler will use for its operations (parsing, dns resolution, fetching);

11https://www.privoxy.org
12https://www.irif.fr/ jch/software/polipo/

6



(ii) which resources are collected from websites (e.g. html pages, media file, digital documents);
(iii) network timeouts used when contacting websites; (iv) where collected date will be stored; (v)
how and whether to manage cookies; (vi) the delays between requests to the same website. For a
complete list of configuration parameters we refer the reader to BUbiNG’s documentation 13. With
our toolkit we provide a standard crawler configuration, tested for Tor network, thus editing that file
is not needed for standard usage.

For what concerns the crawling process, in BUbiNG a pool of software agents are responsible for
both exploring the Web and collecting (and partially elaborating) the data. Such agents work in
parallel, each handling in turn several threads, and by default implementing a breadth-first-search.
Due to Tor’s high volatility, the results of the crawling process are theoretically susceptible to fluctu-
ations based on the order in which links are followed. Yet, we did not have any reason to prefer one
order over another, and we therefore did not modify this setting. Summing up, in our experiments
BUbiNG was used as follows:

• A predetermined set of hidden services, the root set, is inserted in an url list.

• The first fetching thread available extracts the first onion url from the list and exports the
content of the corresponding hidden service in main memory.

• The first parsing thread available analyses that content aiming at extracting new onion urls
to visit.

• The new onion urls found are passed to a sieve able to verify whether those urls were
already visited before.

• If so, the urls are discarded, otherwise they are added in the tail of the url list.

• Fetching threads attempt to contact each url for a maximum of three times, after that the
url is considered not available.

3.2 External Modules

Alongside of the core application, our toolkit comprehends two external modules which can be
launched independently: a set of Scrapy Spiders, written in Python, and a Graph Builder, writ-
ten in C. The spiders enhance the crawling process by permitting focused crawling, supporting
semi-automated procedures, and offering anti-detection settings. The Graph Builder supports the
reconstruction of the graph associated to the crawling process, enabling topological studies of the
explored portion of the Web.

3.2.1 Scrapy Spiders

Besides BUbiNG, we developed and integrated in our toolkit a set of customized spiders which can
be managed as modules and used to boost the crawling process. Specifically, our spiders were writ-
ten relying on Scrapy 14, a Python framework for crawling websites and extracting data. Using ad-
hoc spiders besides the main crawler allows for focused crawling which supports a semi-automated
(i.e. human assisted) procedure needed to gain access to hidden contents requiring a login procedure
or a captcha solver. Moreover, through configuration settings, we are able to choose a breadth-first
or depth-first search strategy for the crawling procedure. A further customization required for our
spiders consists in avoiding crawling detection, which may be implemented by our targets. To that
purpose, we included configuration settings concerning the robots exclusion protocol, network time-
outs and (again) delays between requests to the same website. Furthermore, we programmed our
spiders to visit only specific sections of targeted websites and to carry out only legal and not suspi-
cious actions. Finally, the data collected by Scrapy Spiders are stored as files in a directory and are
integrated in the core application via the extractor module. Indeed, through configuration settings,
the extractor unit can be instructed to retrieve files from system directories. The Scrapy Spiders
module can be used as a template to create other spiders with the same framework, or as an example
of how to integrate data collected by other crawlers.

13http://law.di.unimi.it/software/bubing-docs/overview-summary.html
14https://scrapy.org

7



3.2.2 Graph Builder

The Graph Builder is written in C and supports the reconstruction of the graphs associated to the
crawling process, using the WARC archive created by BUbiNG. To parse HTML file and extract
links we use the mythml library 15. The Graph Builder module is a multi-thread application, it takes
as input the name of the WARC file to read and the number of threads to use to build the graphs.
For each WARC file three directed graphs are created by the module, a page graph, a host graph and
a service graph, which are represented as list of edges. In the page graph an edge exists between
page A and page B if there is a least a link from page A to page B. In the host graph an edge exists
between host A and host B if there is a least a page of host A that links to a page of host B. The
service graph is the higher level of grouping, in which each node represents an hidden service, which
is identified by a 16 character string (base32 encoded). In this graph an edge exists between service
A and service B if there is a least a page of service A that links to a page of service B. Each graph is
represented by two files that are written as output by the module: a “.index” and a “.edges” file. The
“.index” file contains the id of each graph’s node with the corresponding url, while the “.edges” file
contains the list of graph’s edges represented as id pairs.

3.3 Usage

To manage the execution of the core application we provide three scripts, which are used to start,
stop and reload the configuration file. Moreover, the core application handles the following POSIX
signals: SIGTERM, SIGHUP and SIGINT. If the application receives a SIGINT or SIGTERM it
activates the stop procedure, if it receives a SIGHUP it schedules the reload of configuration file.
The other two modules, namely the Graph Builder and the Scrapy Spiders, have to be started sepa-
rately. The user can decide to use any subset of modules and operations provided by the toolkit. In
particular, the Graph Builder should be activated only at the end of the crawling procedure, whereas
the Scrapy Spiders can be activated whenever needed. For Scrapy Spiders the only requirements are:
the activation of the core application and the activation of the extraction-from-file modality. In case
these requirements are not met, data collected by spiders won’t be extracted, analysed and stored in
the database by the core application.

4 Testing the Toolkit

To assess the performance and the potential of our toolkit, we tested its ability to mine the contents
and structure of the Tor Web. In this section, we report relevant findings of this preliminary, yet
wide, exploration run. More details can be found in [23], where we thoroughly investigate the
topology of the Tor Web graph, the semantics of extracted texts, and their mutual correlation. In the
following, we first briefly recap what the Tor Web is and how it works, in order to both motivate and
contextualize the successive analysis.

4.1 Tor Principles

The expression Tor Web refers to the network made of all Tor’s hidden services, connected through
hyperlinks. This network is not to be confused with the network of Tor’s relays, i.e. routers man-
aged by volunteers over the Internet upon which Tor’s anonymity relies, through multiple layers of
encryption that are stripped off one by one along the route that connects source to destination [11].
To contact a hidden service, a client needs to obtain the service’s onion url (a 80-bit excerpt of the
SHA-1 hash digest of its public key), which is used to download a signed descriptor, containing
the service’s public key and a list of introduction points. Communication between client and hid-
den service takes place through secure circuits to a commonly known relay, known as rendezvous
point. The rendezvous point is chosen by the client and communicated to the hidden service via
one of the introduction points. The security of Tor relies on cryptography at three different levels:
(i) encryption for data privacy within Tor, (ii) authentication between clients and relays, and (iii)
integrity/authenticity of the list of relays, stored by special nodes of the network called directory
authorities, endowed with their own directory signing key.

Developing suitable tools to explore and analyse the Tor Web is of primary importance for a number
of reasons. First, searching through the Tor Web is not possible using standard approaches, since

15https://github.com/lexborisov/myhtml

8



Tor’s hidden services are not indexed by traditional search engines like Google or Bing. Specific Tor
search engines exist, accessible through the surface Web (e.g. Ahmia 16, Onion.link 17), or through
Tor only (e.g. DuckDuckGo 18, TORCH 19), but they are not likewise reliable, mostly because Tor
is very volatile and not as connected as the surface Web. Even the size of the Tor Web can be hardly
estimated, despite a few crawling attempts [16, 15, 25]. Although the analysis of the surface Web
graph has flourished in the past, to the best of our knowledge no similar result/work for the Tor
Web exists, and consequently little or no information over the structure of the Tor hidden services
network is known to date. A few attempts at classifying the content of Tor hidden services can be
found in the literature [16, 15, 25], but each presents limitations related to either the scale or the
scope of the crawling, or to the techniques – mostly, topic model-based – used to mine the collected
textual data. Both novel instruments and further studies are needed to fully characterize the Tor Web
and to collect as much information as possible on its structure and content, which is instrumental
in reaching a clear understanding of its functioning and of the habits of its users (hidden service’s
owners and clients).

4.2 Data Collection

As shown by past attempts [30, 15], exploring the entire Tor Web is not feasible/practical for a
number of reasons: it can be unstructured, or volatile/temporary; furthermore, relaying timeouts
often occur. Additionally, many hidden services could deliberately try to limit their visibility (e.g.
by not advertising themselves). We therefore argue that a complete scan of the Tor Web is only
possible supporting the crawler with some sort of brute force searcher, able to continuously feed the
url list of the crawler with new hidden services found by participating to Tor (e.g. to collect hidden
service descriptors), or by trying to access random onion urls. We followed a viable alternative,
used in related studies [25], consisting in looking at the portion of the Tor Web that is accessible
from the surface Web. Specifically, our root set was composed of a (large) set of hidden services
obtained merging together results of both standard (e.g. Google) and Tor-specific (e.g. Ahmia)
search engines, other than onion urls advertised on a few Tor wikis and link directories, like “The
Hidden Wiki” page 20. Notably, our root set contains the complete list of hidden services indexed by
Ahmia at the time our crawling activity started. This choice can be read as follows: we focus on the
portion of the Tor Web that is accessible to “common” users 21, only leaving out the most isolated
and (probably) most volatile hidden services (not very interesting, at least from a structural point of
view) and thus measuring the size of the “public” part of the Tor Web.

We ran the crawler for about six weeks. Since preliminary tests showed that the latency of the Tor
network is much higher than expected, we set the connection and socket timeout to 360 seconds.
At the end of the process our dataset contained 1119048 records, thus the crawler tried to connect
to 1119048 urls. However, the actually visited urls were 918885, 824324 of which replied with a
success HTTP status code (200), whereas the other 94561 replied with a 3xx status code 22. All
remaining connection attempts ended with an error code: 96816 urls replied with a 4xx status code,
and 103347 urls with a 5xx status code. The numbers of our crawling are summarized in Table 2.
Let us underline that these numbers do support the quality of both our root set and the crawling
process: the amount of hidden services we were able to analyse is comparable to those used in
previous similar attempts in the literature [16, 15].

4.3 Structure Mining

By feeding the Graph Builder module of our platform with all data gathered in the crawling phase,
we were able to reconstruct the graph of the explored portion of the Tor Web. The outer border of
the Tor network, i.e. pages of the surface Web that link to or are linked by Tor pages, is not reached

16https://ahmia.fi
17https://onion.link
18http://3g2upl4pq6kufc4m.onion
19http://xmh57jrzrnw6insl.onion
20wikitjerrta4qgz4.onion
21Our notion of a common user includes even advanced users that know how to run a crawler, but not users

who are given the url of a hidden service by the owner of that service.
22A status code 3xx is related to Web redirection (https://www.w3.org/Protocols/rfc2616/

rfc2616-sec10.html).

9



Table 2: Crawling results
Number of pages 918885

Number of domains/subdomains 5420

Number of hidden services 5144
Total number of hyperlinks 20446513

Number of bidirectional hyperlinks 2483366

Table 3: The host graphs

Graph Nodes Edges CCs (GCS) Diameter Max Degree
Undirected 5420 64379 1 (5420) 4 4759

Directed 5420 65716 WCCs SCCs
1 (5420) 4514 (670) ∞ In-Degree Out-Degree

303 4751

(W/S)CCs = (Weakly/Strongly) Connected Components – GCS = Giant Component Size

by the crawler, and is therefore not included in the graph (but this behaviour can be easily adjusted
modifying the configuration file of the crawler). Quite naturally, it is possible to define three different
graphs: (i) a page graph, whose nodes are visited pages and whose edges are hyperlinks between
pages; (ii) a host graph (HG), where pages belonging to the same host (i.e. the same Tor domain or
subdomain) are grouped into a single node, and all hyperlinks among pages of two different groups
collapse into a single edge; (iii) a service graph, analogous to the host graph, except that grouping
occurs at the hidden service level. For our structural analysis, we focused on the host graph, which
we believe better synthesizes the connectivity and navigability of the Tor Web. We considered both
its directed (the direction of each edge is of course induced by the corresponding hyperlink) and its
undirected version, which exhibits significant differences. Table 3 summarizes the characteristics of
the two graphs.

Figures 2 and 3 provide a snap-shot of the in- and out-degree distributions of the directed host
graph, focusing, for the sake of clarity, on the most relevant parts of the plots. From Figure 2 we see
that, despite the two distributions having a somewhat similar qualitative behaviour, the out-degree
is significantly more squashed at 0. Specifically, ∼ 72% of the hosts have out-degree 0, i.e., no
outgoing hyperlinks, and adding up hosts with out-degree 1 we reach ∼ 90% of the whole graph,
while hosts with out-degree 2 or 3 are one order of magnitude rarer than those with out-degree 1. On
the other hand, having in-degree 0 or 1 is far less likely for a host, which is reasonable if we think
of how the host graph is built based on the page graph. The distance between the two distributions
is notable up to degree ∼ 30; after that the two trends become very comparable. Overall, Figure 2
suggests that most hosts have only a few inbound connections, and do not provide any link to any
other host. This is further confirmed by the joint in-out-degree distribution, depicted in Figure 3,
that shows that almost half of the hosts concurrently have out-degree 0 and in-degree ≤ 10. Among
other things, these figures underline the importance that specific hosts (most likely, link directories)
have in the topology of the Tor Web graph, providing links to a very large number of other hosts
with very small in-degree and no outgoing edges, in a star-like structure.

If we consider the volatility of the Tor network, and that even the surface Web has been shown to
present similar properties [1], it is not surprising that the network of Tor hosts is very disconnected if
represented as a directed graph. However, in Figure 4 we see that the undirected version of the graph
is significantly more connected than its directed counterpart. In particular, zooming in on degrees
≤ 100, we see that no node has degree 0 (in fact, there is only one giant connected component), and
that degrees 1, 2 and 3 together account for only ∼ 10% of the whole graph.

Finally, to have a better understanding of the importance of single hosts in the Tor network, in Fig-
ure 5 we plot the statistical distribution of the normalized Betweenness Centrality (BC), comparing
the directed and undirected host graph. The BC score of a node is proportional to the number of
shortest paths passing through it; roughly speaking, it quantifies the importance of that node in
the overall connectivity of the graph and in the way information flow through it. Although some
slight differences emerge, the overall trend is the same for the two graphs: there are a few very

10



0 10 20 30 40 50
10−4

10−3

10−2

10−1

100

Degree

F
ra
ct
io
n
o
f
n
o
d
es

In-Degree
Out-Degree

Figure 2: In-degree and out-degree distributions for the directed host graph

0 2 4 6 8 10

0

2

4

6

8

10

in-degree

ou
t-
d
eg
re
e

0%

2%

4%

6%

8%

10%

Figure 3: Joint in-out-degree distribution for the directed host graph

central nodes, surrounded by a vast majority of peripheral nodes. For the computation of the BC we
resorted to a multi-GPU implementation [31, 32].

4.4 Content Mining

In order to evaluate the content of all collected data, we made use of the Cogito semantic engine, that
can be integrated into our platform thanks to its RESTful APIs, and used to analyse all textual data
collected 23. Cogito’s ability to understand what a text is about relies on a customizable semantic
network called Sensigrafo, and on a disambiguation engine called Essex. Both modules strongly
depend on the specific taxonomy used to model concepts of interest. In our case, the taxonomy was
defined within the scope of the “IANCIS” ISEC Project, with categories chosen so as to cover a
wide range of topics, including, but not limited to, illegal activities often associated with Tor. These
categories, together with an overall score that quantifies their measured relevance in our dataset, are
reported in Table 4. Specifically, in our framework Cogito was configured to return, for each page
p, a value Sp[i] ∈ [0, 1] that quantifies to which extent the content of p can be associated to the

23We focused on English text, but Cogito’s taxonomy can be extended to other languages.

11



0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

10−3

10−2

10−1

Degree

F
ra
ct
io
n
of

n
o
d
es

0 10 20 30 40 50 60 70 80 90 100

10−3

10−2

10−1

Degree

F
ra
ct
io
n
of

n
o
d
es

Figure 4: Degree distribution for the undirected host graph

ith category of our taxonomy. Putting together scores Sp[i] for all i yields a semantic vector Sp of
size n (n = 17 in our case) that describes the “position” of page p with respect to the taxonomy.
The overall score of category i reported in Table 4 is obtained averaging Sp[i] over all pages p
whose semantic vector is not all null, i.e. whose content is somewhat relevant with respect to at
least one category of our taxonomy. What emerges from Table 4 is that “Information System” is by
far the most relevant category in the dataset, probably due to its wide scope, followed by “Social
Network”, which captures the abundance of forums and markets where Tor users interact. Not
surprisingly, topics related with cyber criminality are also significantly relevant, as well as “Illicit
Drugs” and “Terrorism”. Conversely, “Child Pornography” related content appeared in our dataset
less frequently than one could imagine, based on previous works.

Finally, the content of two pages p1 and p2 can be compared based on the cosine similarity of the
two corresponding semantic vectors, cosine(Sp1 , Sp2), defined as the cosine of the angle between
Sp1 and Sp2 . If cosine(Sp1 , Sp2) = 0 the two vectors are orthogonal and the two pages have nothing
in common. Conversely, if cosine(Sp1 , Sp2) = 1 the two pages can be considered fully equivalent,
at least with respect to our taxonomy. We computed the pairwise cosine similarity of the semantic
vectors associated to all pages of our dataset with the goal of assessing their semantic uniformity.
Figure 6 shows the statistical distribution of the cosine similarity between any two pages of our

12



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

10−3

10−2

10−1

100

Normalized BC

F
ra
ct
io
n
o
f
n
o
d
es

Directed
Undirected

Figure 5: Normalized BC distribution for the host graphs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.01

0.02

0.03

0.04

0.05

0.06

Similarity

F
re
q
u
en

cy

Figure 6: Statistical distribution of the cosine similarity among pages of our crawl

crawling. In most cases cosine(Sp1
, Sp2

) ≈ 1 or cosine(Sp1
, Sp2

) = 0, which suggests that most
semantic vectors are significantly unbalanced (i.e. the corresponding page can be associated with
only a small subset of the categories considered), so that any two vectors are either very similar or
completely unrelated. This fosters the intuition that the Tor Web is very topic-oriented, with most
hidden services focusing on a specific topic, and only a few hubs, mostly marketplaces, forums,
wikis, or link directories, that can be related to several different topics.

5 Conclusions

In this paper, we presented a novel Web mining toolkit, designed with the aim of providing a wide-
scope, flexible, easy-to-use instrument to thoroughly explore (portions of) the Web, collecting and
analysing data, and reconstructing the graph structure of the crawled network. Motivated by the
increasing attention paid by both researchers and society to submerged and anonymous Web servers
and resources, we tailored our toolkit to operate on the Tor dark Web, but we left full control to the
user for configuring/adjusting/modifying its behaviour.

13



Table 4: Relevance scores of the categories of our taxonomy in crawled pages
Category Score

Information System 0.65872592

Social Network 0.16532867

Cyber Security 0.13046941

Illicit Drugs 0.09255990

Terrorism 0.07622640

Weaponary 0.05358337

Cyber Deception 0.05026633

Fraud 0.03810798

Cyber Attack 0.03700734

Murder 0.01545559

Child Pornography 0.01166300

Rape 0.00722616

Racism 0.00467250

IT Services Companies 0.00149265

Media Companies 0.00121687

Arms Trafficking 0.00066599

Gambling 0.00024497

Other than describing in details our design and implementation choices, we reported the results of
a test run executed over three months, exploring the portion of the Tor Web that can be reached
starting from the surface Web. Our findings, analysed more in depth in [23], provide a fascinating
portrait of the world’s most famous darknet, clarifying the effectiveness and potential of our toolkit.
By making our suite available on demand, we expect to pave the way for further research able to
provide meaningful insights on the characteristics of the most hidden and intriguing sides of the
Web.

The only element of our toolkit that we cannot release is the semantic engine used in our test run,
a proprietary software. Even though our analyser can interact with any engine providing RESTful
APIs, implementing our own text mining tool to replace Cogito is the primary direction for future
extensions of our toolkit. Luckily, the literature flourishes with compelling ideas [33, 34] which can
be developed into algorithms and applications for addressing communal desiderata of Web content
mining, such as extracting topics/clusters and assessing document similarities.

References
[1] JonM. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and AndrewS.

Tomkins. The web as a graph: Measurements, models, and methods. In Takano Asano, Hideki
Imai, D.T. Lee, Shin-ichi Nakano, and Takeshi Tokuyama, editors, Computing and Combi-
natorics, volume 1627 of Lecture Notes in Computer Science, pages 1–17. Springer Berlin
Heidelberg, 1999.

[2] Raymond Kosala and Hendrik Blockeel. Web mining research: A survey. SIGKDD Explor.
Newsl., 2(1):1–15, June 2000.

[3] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans M. Coetzee. Self-organization
and identification of web communities. IEEE Computer, 35:66–71, 2002.

14



[4] Soumen Chakrabarti, Amit Pathak, and Manish Gupta. Index design and query processing for
graph conductance search. The VLDB Journal, 20(3):445–470, June 2011.

[5] Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and Robert Baumgartner. Web data
extraction, applications and techniques: A survey. Knowledge-Based Systems, 70:301 – 323,
2014.

[6] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: Compression techniques.
In Proceedings of the 13th International Conference on World Wide Web, WWW ’04, pages
595–602, New York, NY, USA, 2004. ACM.

[7] Francisco Claude and Gonzalo Navarro. Fast and compact web graph representations. ACM
Trans. Web, 4(4):16:1–16:31, September 2010.

[8] Francisco Claude and Susana Ladra. Practical representations for web and social graphs. In
Proceedings of the 20th ACM International Conference on Information and Knowledge Man-
agement, CIKM ’11, pages 1185–1190, New York, NY, USA, 2011. ACM.

[9] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D Sivakumar, Andrew Tomkins, and
Eli Upfal. Stochastic models for the web graph. In Foundations of Computer Science, 2000.
Proceedings. 41st Annual Symposium on, pages 57–65, 2000.

[10] Anthony Bonato. A survey of models of the web graph. In Alejandro López-Ortiz and
AngèleM. Hamel, editors, Combinatorial and Algorithmic Aspects of Networking, volume
3405 of Lecture Notes in Computer Science, pages 159–172. Springer Berlin Heidelberg, 2005.

[11] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th Usenix Security Symposium, 2004.

[12] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven Cheung,
Frank Wang, and Dan Boneh. Stegotorus: A camouflage proxy for the tor anonymity system.
In Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS
’12, pages 109–120, New York, NY, USA, 2012. ACM.

[13] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for tor hidden services:
Detection, measurement, deanonymization. In Proceedings of the 2013 IEEE Symposium on
Security and Privacy, SP ’13, pages 80–94, Washington, DC, USA, 2013. IEEE Computer
Society.

[14] Daniel Arp, Fabian Yamaguchi, and Konrad Rieck. Torben: A practical side-channel attack
for deanonymizing tor communication. In Proceedings of the 10th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIA CCS ’15, pages 597–602, New York,
NY, USA, 2015. ACM.

[15] Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-Philipp Weinmann. Content and popu-
larity analysis of tor hidden services. In Distributed Computing Systems Workshops (ICDCSW),
2014 IEEE 34th International Conference on, pages 188–193, June 2014.

[16] Martijn Spitters, Stefan Verbruggen, and Mark van Staalduinen. Towards a comprehensive
insight into the thematic organization of the tor hidden services. In Intelligence and Security
Informatics Conference (JISIC), 2014 IEEE Joint, pages 220–223, Sept 2014.

[17] Monica J. Barrat. Silk road: Ebay for drugs. Addiction, 107(3):683–683, 2012.

[18] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubicrawler: A scalable
fully distributed web crawler. Software: Practice and Experience, 34(8):711–726, 2004.

[19] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. Bubing: Massive crawl-
ing for the masses. In Proceedings of the Companion Publication of the 23rd International
Conference on World Wide Web Companion, pages 227–228, 2014.

[20] Allan Heydon and Marc Najork. Mercator: A scalable, extensible web crawler. World Wide
Web, 2(4):219–229, 1999.

15



[21] Gordon Mohr, Michael Stack, Igor Ranitovic, Dan Avery, and Michele Kimpton. An introduc-
tion to heritrix an open source archival quality web crawler. In In IWAW’04, 4th International
Web Archiving Workshop. Citeseer, 2004.

[22] Christopher Olston, Marc Najork, et al. Web crawling. Foundations and Trends R© in Informa-
tion Retrieval, 4(3):175–246, 2010.

[23] Massimo Bernaschi, Alessandro Celestini, Stefano Guarino, and Flavio Lombardi. Exploring
and analyzing the tor hidden services graph. ACM Transactions on the Web, page To appear,
2017.

[24] Gareth Owen and Nick Savage. Empirical analysis of tor hidden services. IET Information
Security, 10(3):113–118, 2016.

[25] Kyle Soska and Nicolas Christin. Measuring the longitudinal evolution of the online anony-
mous marketplace ecosystem. In 24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015., pages 33–48, 2015.

[26] Olivier Blanvillain, Nikos Kasioumis, and Vangelis Banos. Blogforever crawler: techniques
and algorithms to harvest modern weblogs. In Proceedings of the 4th International Conference
on Web Intelligence, Mining and Semantics (WIMS14), page 7. ACM, 2014.

[27] Feng Zhao, Jingyu Zhou, Chang Nie, Heqing Huang, and Hai Jin. Smartcrawler: A two-
stage crawler for efficiently harvesting deep-web interfaces. IEEE Transactions on Services
Computing, 9(4):608–620, 2016.

[28] Matko Bošnjak, Eduardo Oliveira, José Martins, Eduarda Mendes Rodrigues, and Luı́s Sar-
mento. Twitterecho: a distributed focused crawler to support open research with twitter data.
In Proceedings of the 21st International Conference on World Wide Web, pages 1233–1240.
ACM, 2012.

[29] Rohit Khare, Doug Cutting, Kragen Sitaker, and Adam Rifkin. Nutch: A flexible and scalable
open-source web search engine. Oregon State University, 1:32–32, 2004.

[30] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker. Shining
light in dark places: Understanding the tor network. In Nikita Borisov and Ian Goldberg,
editors, Privacy Enhancing Technologies, volume 5134 of Lecture Notes in Computer Science,
pages 63–76. Springer Berlin Heidelberg, 2008.

[31] Flavio Vella, Giancarlo Carbone, and Massimo Bernaschi. Algorithms and heuristics for scal-
able betweenness centrality computation on multi-gpu systems. CoRR, abs/1602.00963, 2016.

[32] Massimo Bernaschi, Giancarlo Carbone, and Flavio Vella. Scalable betweenness centrality
on multi-gpu systems. In Proceedings of the ACM International Conference on Computing
Frontiers, CF ’16, pages 29–36, New York, NY, USA, 2016. ACM.

[33] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

16


