Cranic Computing

Epidemics on Networks

Epidemic risk assessment from geographic population density

The geographic distribution of the population on a region is a significant ingredient in shaping the spatial and temporal evolution of an epidemic outbreak. Heterogeneity in the population density directly impacts the local relative risk: the chances that a specific area is reached by the contagion depend on its local density and connectedness to the rest of the region. We consider an SIR epidemic spreading in an urban territory subdivided into tiles (i.e., census blocks) of given population and demographic profile. We use the relative attack rate and the first infection time of a tile to quantify local severity and timing: how much and how fast the outbreak will impact any given area. Assuming that the contact rate of any two individuals depends on their household distance, we identify a suitably defined geographical centrality that measures the average connectedness of an area as an efficient indicator for local riskiness. We simulate the epidemic under different assumptions regarding the socio-demographic factors that influence interaction patterns, providing empirical evidence of the effectiveness and soundness of the proposed centrality measure. (Paper, pdf)

Epidemics in a Synthetic Urban Population with Multiple Levels of Mixing

Network–based epidemic models that account for heterogeneous contact patterns are extensively used to predict and control the diffusion of infectious diseases. We use census and survey data to reconstruct a geo–referenced and age–stratified synthetic urban population connected by stable social relations. We consider two kinds of interactions, distinguishing daily (household) contacts from other frequent contacts. Moreover, we allow any couple of individuals to have rare for- tuitous interactions. We simulate the epidemic diffusion on a synthetic urban network for a typical medium-size Italian city and characterize the outbreak speed, pervasiveness, and predictability in terms of the socio– demographic and geographic features of the host population. Introducing age–structured contact patterns results in faster and more pervasive outbreaks, while assuming that the interaction frequency decays with distance has only negligible effects. Preliminary evidence shows the existence of patterns of hierarchical spatial diffusion in urban areas, with two regimes for epidemic spread in low- and high-density regions.(Paper)

A Model for Urban Social Networks

Defining accurate and flexible models for real-world networks of human beings is instrumental to understand the observed properties of phenomena taking place across those networks and to support computer simulations of dynamic processes of interest for several areas of research – including computational epidemiology, which is recently high on the agenda. In this paper we present a flexible model to generate age-stratified and geo-referenced synthetic social networks on the basis of widely available aggregated demographic data and, possibly, of estimated age-based social mixing patterns. Using the Italian city of Florence as a case study, we characterize our network model under selected configurations and we show its potential as a building block for the simulation of infections’ propagation. A fully operational and parametric implementation of our model is released as open-source.(Paper)

Data-Driven Simulation of Contagions in Public Venues

The COVID-19 pandemic triggered a global research effort to define and assess timely and effective containment policies. Understanding the role that specific venues play in the dynamics of epidemic spread is critical to guide the implementation of fine-grained non-pharmaceutical interventions (NPIs). In this paper, we present a new model of context-dependent interactions that integrates information about the surrounding territory and the social fabric. Building on this model, we developed an open-source data-driven simulator of the patterns of fruition of specific gathering places that can be easily configured to project and compare multiple scenarios. We focused on the greatest park of the City of Florence, Italy, to provide experimental evidence that our simulator produces contact graphs with unique, realistic features, and that gaining control of the mechanisms that govern interactions at the local scale allows to unveil and possibly control non-trivial aspects of the epidemic.(Paper)